全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2016 

PAF Complex Plays Novel Subunit-Specific Roles in Alternative Cleavage and Polyadenylation

DOI: 10.1371/journal.pgen.1005794

Full-Text   Cite this paper   Add to My Lib

Abstract:

The PAF complex (Paf1C) has been shown to regulate chromatin modifications, gene transcription, and RNA polymerase II (PolII) elongation. Here, we provide the first genome-wide profiles for the distribution of the entire complex in mammalian cells using chromatin immunoprecipitation and high throughput sequencing. We show that Paf1C is recruited not only to promoters and gene bodies, but also to regions downstream of cleavage/polyadenylation (pA) sites at 3’ ends, a profile that sharply contrasted with the yeast complex. Remarkably, we identified novel, subunit-specific links between Paf1C and regulation of alternative cleavage and polyadenylation (APA) and upstream antisense transcription using RNAi coupled with deep sequencing of the 3’ ends of transcripts. Moreover, we found that depletion of Paf1C subunits resulted in the accumulation of PolII over gene bodies, which coincided with APA. Depletion of specific Paf1C subunits led to global loss of histone H2B ubiquitylation, although there was little impact of Paf1C depletion on other histone modifications, including tri-methylation of histone H3 on lysines 4 and 36 (H3K4me3 and H3K36me3), previously associated with this complex. Our results provide surprising differences with yeast, while unifying observations that link Paf1C with PolII elongation and RNA processing, and indicate that Paf1C subunits could play roles in controlling transcript length through suppression of PolII accumulation at transcription start site (TSS)-proximal pA sites and regulating pA site choice in 3’UTRs.

References

[1]  Jaehning JA. The Paf1 complex: platform or player in RNA polymerase II transcription? Biochim Biophys Acta. 2010;1799(5–6):379–88. Epub 2010/01/12. doi: 10.1016/j.bbagrm.2010.01.001. pmid:20060942
[2]  Zhu B, Mandal SS, Pham AD, Zheng Y, Erdjument-Bromage H, Batra SK, et al. The human PAF complex coordinates transcription with events downstream of RNA synthesis. Genes Dev. 2005;19(14):1668–73. Epub 2005/07/19. pmid:16024656 doi: 10.1101/gad.1292105
[3]  Kim J, Guermah M, Roeder RG. The human PAF1 complex acts in chromatin transcription elongation both independently and cooperatively with SII/TFIIS. Cell. 2010;140(4):491–503. Epub 2010/02/25. doi: 10.1016/j.cell.2009.12.050. pmid:20178742
[4]  Chen Y, Yamaguchi Y, Tsugeno Y, Yamamoto J, Yamada T, Nakamura M, et al. DSIF, the Paf1 complex, and Tat-SF1 have nonredundant, cooperative roles in RNA polymerase II elongation. Genes Dev. 2009;23(23):2765–77. Epub 2009/12/03. doi: 10.1101/gad.1834709. pmid:19952111
[5]  Rahl PB, Lin CY, Seila AC, Flynn RA, McCuine S, Burge CB, et al. c-Myc regulates transcriptional pause release. Cell. 2010;141(3):432–45. Epub 2010/05/04. doi: 10.1016/j.cell.2010.03.030. pmid:20434984
[6]  Chen FX, Woodfin AR, Gardini A, Rickels RA, Marshall SA, Smith ER, et al. PAF1, a Molecular Regulator of Promoter-Proximal Pausing by RNA Polymerase II. Cell. 2015. Epub 2015/08/19. doi: 10.1016/j.cell.2015.07.042
[7]  Cao QF, Yamamoto J, Isobe T, Tateno S, Murase Y, Chen Y, et al. Characterization of the Human Transcription Elongation Factor Rtf1: Evidence for Non-overlapping Functions of Rtf1 and the Paf1 Complex. Mol Cell Biol. 2015. Epub 2015/07/29. doi: 10.1128/mcb.00914-15
[8]  Krogan NJ, Kim M, Ahn SH, Zhong G, Kobor MS, Cagney G, et al. RNA polymerase II elongation factors of Saccharomyces cerevisiae: a targeted proteomics approach. Mol Cell Biol. 2002;22(20):6979–92. Epub 2002/09/21. pmid:12242279 doi: 10.1128/mcb.22.20.6979-6992.2002
[9]  Dronamraju R, Strahl BD. A feed forward circuit comprising Spt6, Ctk1 and PAF regulates Pol II CTD phosphorylation and transcription elongation. Nucleic Acids Res. 2014;42(2):870–81. Epub 2013/10/29. doi: 10.1093/nar/gkt1003. pmid:24163256
[10]  Kaplan CD, Holland MJ, Winston F. Interaction between transcription elongation factors and mRNA 3'-end formation at the Saccharomyces cerevisiae GAL10-GAL7 locus. J Biol Chem. 2005;280(2):913–22. Epub 2004/11/09. pmid:15531585 doi: 10.1074/jbc.m411108200
[11]  Nagaike T, Logan C, Hotta I, Rozenblatt-Rosen O, Meyerson M, Manley JL. Transcriptional activators enhance polyadenylation of mRNA precursors. Mol Cell. 2011;41(4):409–18. Epub 2011/02/19. doi: 10.1016/j.molcel.2011.01.022. pmid:21329879
[12]  Krogan NJ, Dover J, Wood A, Schneider J, Heidt J, Boateng MA, et al. The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation. Mol Cell. 2003;11(3):721–9. Epub 2003/04/02. pmid:12667454 doi: 10.1016/s1097-2765(03)00091-1
[13]  Ng HH, Robert F, Young RA, Struhl K. Targeted Recruitment of Set1 Histone Methylase by Elongating Pol II Provides a Localized Mark and Memory of Recent Transcriptional Activity. Molecular Cell. 2003;11(3):709–19. pmid:12667453 doi: 10.1016/s1097-2765(03)00092-3
[14]  Adelman K, Wei W, Ardehali MB, Werner J, Zhu B, Reinberg D, et al. Drosophila Paf1 modulates chromatin structure at actively transcribed genes. Mol Cell Biol. 2006;26(1):250–60. pmid:16354696 doi: 10.1128/mcb.26.1.250-260.2006
[15]  Pirngruber J, Shchebet A, Schreiber L, Shema E, Minsky N, Chapman RD, et al. CDK9 directs H2B monoubiquitination and controls replication-dependent histone mRNA 3'-end processing. EMBO Rep. 2009;10(8):894–900. Epub 2009/07/04. doi: 10.1038/embor.2009.108. pmid:19575011
[16]  Mbogning J, Nagy S, Page V, Schwer B, Shuman S, Fisher RP, et al. The PAF complex and Prf1/Rtf1 delineate distinct Cdk9-dependent pathways regulating transcription elongation in fission yeast. PLoS genetics. 2013;9(12):e1004029. Epub 2014/01/05. doi: 10.1371/journal.pgen.1004029. pmid:24385927
[17]  Sheldon KE, Mauger DM, Arndt KM. A Requirement for the Saccharomyces cerevisiae Paf1 complex in snoRNA 3' end formation. Mol Cell. 2005;20(2):225–36. Epub 2005/10/26. pmid:16246725 doi: 10.1016/j.molcel.2005.08.026
[18]  Nordick K, Hoffman MG, Betz JL, Jaehning JA. Direct interactions between the Paf1 complex and a cleavage and polyadenylation factor are revealed by dissociation of Paf1 from RNA polymerase II. Eukaryot Cell. 2008;7(7):1158–67. Epub 2008/05/13. doi: 10.1128/EC.00434-07. pmid:18469135
[19]  Penheiter KL, Washburn TM, Porter SE, Hoffman MG, Jaehning JA. A posttranscriptional role for the yeast Paf1-RNA polymerase II complex is revealed by identification of primary targets. Mol Cell. 2005;20(2):213–23. Epub 2005/10/26. pmid:16246724 doi: 10.1016/j.molcel.2005.08.023
[20]  Ding L, Paszkowski-Rogacz M, Nitzsche A, Slabicki MM, Heninger AK, de Vries I, et al. A genome-scale RNAi screen for Oct4 modulators defines a role of the Paf1 complex for embryonic stem cell identity. Cell Stem Cell. 2009;4(5):403–15. Epub 2009/04/07. doi: 10.1016/j.stem.2009.03.009. pmid:19345177
[21]  Langenbacher AD, Nguyen CT, Cavanaugh AM, Huang J, Lu F, Chen JN. The PAF1 complex differentially regulates cardiomyocyte specification. Dev Biol. 2011;353(1):19–28. Epub 2011/02/23. doi: 10.1016/j.ydbio.2011.02.011. pmid:21338598
[22]  Bai X, Kim J, Yang Z, Jurynec MJ, Akie TE, Lee J, et al. TIF1[gamma] Controls Erythroid Cell Fate by Regulating Transcription Elongation. Cell. 2010;142(1):133–43. doi: 10.1016/j.cell.2010.05.028. pmid:20603019
[23]  Ponnusamy MP, Deb S, Dey P, Chakraborty S, Rachagani S, Senapati S, et al. RNA polymerase II associated factor 1/PD2 maintains self-renewal by its interaction with Oct3/4 in mouse embryonic stem cells. Stem Cells. 2009;27(12):3001–11. Epub 2009/10/13. doi: 10.1002/stem.237. pmid:19821493
[24]  Milne TA, Kim J, Wang GG, Stadler SC, Basrur V, Whitcomb SJ, et al. Multiple interactions recruit MLL1 and MLL1 fusion proteins to the HOXA9 locus in leukemogenesis. Mol Cell. 2010;38(6):853–63. Epub 2010/06/15. doi: 10.1016/j.molcel.2010.05.011. pmid:20541448
[25]  Muntean AG, Tan J, Sitwala K, Huang Y, Bronstein J, Connelly JA, et al. The PAF complex synergizes with MLL fusion proteins at HOX loci to promote leukemogenesis. Cancer Cell. 2010;17(6):609–21. Epub 2010/06/15. doi: 10.1016/j.ccr.2010.04.012. pmid:20541477
[26]  Speck NA, Vakoc CR. PAF is in the cabal of MLL1-interacting proteins that promote leukemia. Cancer Cell. 2010;17(6):531–2. Epub 2010/06/15. doi: 10.1016/j.ccr.2010.05.019. pmid:20541697
[27]  Tian B, Hu J, Zhang H, Lutz CS. A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res. 2005;33(1):201–12. pmid:15647503 doi: 10.1093/nar/gki158
[28]  Tian B, Manley JL. Alternative cleavage and polyadenylation: the long and short of it. Trends Biochem Sci. 2013;38(6):312–20. Epub 2013/05/02. doi: 10.1016/j.tibs.2013.03.005. pmid:23632313
[29]  Elkon R, Ugalde AP, Agami R. Alternative cleavage and polyadenylation: extent, regulation and function. Nat Rev Genet. 2013;14(7):496–506. doi: 10.1038/nrg3482. pmid:23774734
[30]  Lutz CS, Moreira A. Alternative mRNA polyadenylation in eukaryotes: an effective regulator of gene expression. Wiley Interdiscip Rev RNA. 2011;2(1):22–31. Epub 2011/10/01. doi: 10.1002/wrna.47. pmid:21956967
[31]  Ji Z, Tian B. Reprogramming of 3' untranslated regions of mRNAs by alternative polyadenylation in generation of pluripotent stem cells from different cell types. PLoS One. 2009;4(12):e8419. Epub 2009/12/29. doi: 10.1371/journal.pone.0008419. pmid:20037631
[32]  Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB. Proliferating cells express mRNAs with shortened 3' untranslated regions and fewer microRNA target sites. Science. 2008;320(5883):1643–7. Epub 2008/06/21. doi: 10.1126/science.1155390. pmid:18566288
[33]  Mayr C, Bartel DP. Widespread shortening of 3'UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell. 2009;138(4):673–84. Epub 2009/08/26. doi: 10.1016/j.cell.2009.06.016. pmid:19703394
[34]  Hoque M, Ji Z, Zheng D, Luo W, Li W, You B, et al. Analysis of alternative cleavage and polyadenylation by 3' region extraction and deep sequencing. Nat Methods. 2013;10(2):133–9. Epub 2012/12/18. doi: 10.1038/nmeth.2288. pmid:23241633
[35]  Mandel CR, Bai Y, Tong L. Protein factors in pre-mRNA 3'-end processing. Cell Mol Life Sci. 2008;65(7–8):1099–122. Epub 2007/12/26. pmid:18158581 doi: 10.1007/s00018-007-7474-3
[36]  Shi Y, Manley JL. The end of the message: multiple protein-RNA interactions define the mRNA polyadenylation site. Genes Dev. 2015;29(9):889–97. Epub 2015/05/03. doi: 10.1101/gad.261974.115. pmid:25934501
[37]  Zheng D, Tian B. Sizing up the poly(A) tail: insights from deep sequencing. Trends Biochem Sci. 2014;39(6):255–7. Epub 2014/04/23. doi: 10.1016/j.tibs.2014.04.002. pmid:24751511
[38]  Rozenblatt-Rosen O, Nagaike T, Francis JM, Kaneko S, Glatt KA, Hughes CM, et al. The tumor suppressor Cdc73 functionally associates with CPSF and CstF 3' mRNA processing factors. Proc Natl Acad Sci U S A. 2009;106(3):755–60. Epub 2009/01/13. doi: 10.1073/pnas.0812023106. pmid:19136632
[39]  Vethantham V, Yang Y, Bowman C, Asp P, Lee JH, Skalnik DG, et al. Dynamic loss of H2B ubiquitylation without corresponding changes in H3K4 trimethylation during myogenic differentiation. Mol Cell Biol. 2012;32(6):1044–55. Epub 2012/01/19. doi: 10.1128/MCB.06026-11. pmid:22252316
[40]  Rozenblatt-Rosen O, Hughes CM, Nannepaga SJ, Shanmugam KS, Copeland TD, Guszczynski T, et al. The parafibromin tumor suppressor protein is part of a human Paf1 complex. Mol Cell Biol. 2005;25(2):612–20. Epub 2005/01/06. pmid:15632063 doi: 10.1128/mcb.25.2.612-620.2005
[41]  Mueller CL, Jaehning JA. Ctr9, Rtf1, and Leo1 are components of the Paf1/RNA polymerase II complex. Mol Cell Biol. 2002;22(7):1971–80. Epub 2002/03/09. pmid:11884586 doi: 10.1128/mcb.22.7.1971-1980.2002
[42]  Mayer A, Lidschreiber M, Siebert M, Leike K, Soding J, Cramer P. Uniform transitions of the general RNA polymerase II transcription complex. Nat Struct Mol Biol. 2010;17(10):1272–8. Epub 2010/09/08. doi: 10.1038/nsmb.1903. pmid:20818391
[43]  Li W, You B, Hoque M, Zheng D, Luo W, Ji Z, et al. Systematic profiling of poly(A)+ transcripts modulated by core 3' end processing and splicing factors reveals regulatory rules of alternative cleavage and polyadenylation. PLoS Genet. 2015;11(4):e1005166. Epub 2015/04/24. doi: 10.1371/journal.pgen.1005166. pmid:25906188
[44]  Berg MG, Singh LN, Younis I, Liu Q, Pinto AM, Kaida D, et al. U1 snRNP determines mRNA length and regulates isoform expression. Cell. 2012;150(1):53–64. Epub 2012/07/10. doi: 10.1016/j.cell.2012.05.029. pmid:22770214
[45]  Almada AE, Wu X, Kriz AJ, Burge CB, Sharp PA. Promoter directionality is controlled by U1 snRNP and polyadenylation signals. Nature. 2013;499(7458):360–3. Epub 2013/06/25. doi: 10.1038/nature12349. pmid:23792564
[46]  Kaida D, Berg MG, Younis I, Kasim M, Singh LN, Wan L, et al. U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation. Nature. 2010;468(7324):664–8. Epub 2010/10/01. doi: 10.1038/nature09479. pmid:20881964
[47]  Jonkers I, Lis JT. Getting up to speed with transcription elongation by RNA polymerase II. Nat Rev Mol Cell Biol. 2015;16(3):167–77. Epub 2015/02/19. doi: 10.1038/nrm3953. pmid:25693130
[48]  Yonaha M, Proudfoot NJ. Specific transcriptional pausing activates polyadenylation in a coupled in vitro system. Mol Cell. 1999;3(5):593–600. Epub 1999/06/09. pmid:10360175 doi: 10.1016/s1097-2765(00)80352-4
[49]  Glover-Cutter K, Kim S, Espinosa J, Bentley DL. RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes. Nat Struct Mol Biol. 2008;15(1):71–8. Epub 2007/12/25. pmid:18157150 doi: 10.1038/nsmb1352
[50]  Chen FX, Woodfin AR, Gardini A, Rickels RA, Marshall SA, Smith ER, et al. PAF1, a Molecular Regulator of Promoter-Proximal Pausing by RNA Polymerase II. Cell. 2015;162(5):1003–15. doi: 10.1016/j.cell.2015.07.042. pmid:26279188
[51]  Pinto PA, Henriques T, Freitas MO, Martins T, Domingues RG, Wyrzykowska PS, et al. RNA polymerase II kinetics in polo polyadenylation signal selection. EMBO J. 2011;30(12):2431–44. doi: 10.1038/emboj.2011.156. pmid:21602789
[52]  He N, Chan CK, Sobhian B, Chou S, Xue Y, Liu M, et al. Human Polymerase-Associated Factor complex (PAFc) connects the Super Elongation Complex (SEC) to RNA polymerase II on chromatin. Proc Natl Acad Sci U S A. 2011;108(36):E636–45. Epub 2011/08/30. doi: 10.1073/pnas.1107107108. pmid:21873227
[53]  Zeng H, Xu W. Ctr9, a key subunit of PAFc, affects global estrogen signaling and drives ERalpha-positive breast tumorigenesis. Genes Dev. 2015;29(20):2153–67. doi: 10.1101/gad.268722.115. pmid:26494790
[54]  Jenal M, Elkon R, Loayza-Puch F, van Haaften G, Kuhn U, Menzies FM, et al. The poly(A)-binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites. Cell. 2012;149(3):538–53. Epub 2012/04/17. doi: 10.1016/j.cell.2012.03.022. pmid:22502866
[55]  de Klerk E, Venema A, Anvar SY, Goeman JJ, Hu O, Trollet C, et al. Poly(A) binding protein nuclear 1 levels affect alternative polyadenylation. Nucleic Acids Res. 2012;40(18):9089–101. Epub 2012/07/10. doi: 10.1093/nar/gks655. pmid:22772983
[56]  Apponi LH, Corbett AH, Pavlath GK. Control of mRNA stability contributes to low levels of nuclear poly(A) binding protein 1 (PABPN1) in skeletal muscle. Skelet Muscle. 2013;3(1):23. Epub 2013/10/03. doi: 10.1186/2044-5040-3-23. pmid:24083404
[57]  Brais B, Bouchard JP, Xie YG, Rochefort DL, Chretien N, Tome FM, et al. Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy. Nature genetics. 1998;18(2):164–7. Epub 1998/02/14. pmid:9462747 doi: 10.1038/ng0298-164
[58]  Blais A, van Oevelen CJC, Margueron R, Acosta-Alvear D, Dynlacht BD. Retinoblastoma tumor suppressor protein–dependent methylation of histone H3 lysine 27 is associated with irreversible cell cycle exit. The Journal of Cell Biology. 2007;179(7):1399–412. doi: 10.1083/jcb.200705051. pmid:18166651
[59]  Cheng J, Blum R, Bowman C, Hu D, Shilatifard A, Shen S, et al. A role for H3K4 monomethylation in gene repression and partitioning of chromatin readers. Mol Cell. 2014;53(6):979–92. doi: 10.1016/j.molcel.2014.02.032. pmid:24656132
[60]  Brannan K, Kim H, Erickson B, Glover-Cutter K, Kim S, Fong N, et al. mRNA decapping factors and the exonuclease Xrn2 function in widespread premature termination of RNA polymerase II transcription. Mol Cell. 2012;46(3):311–24. doi: 10.1016/j.molcel.2012.03.006. pmid:22483619
[61]  Mendez J, Stillman B. Chromatin association of human origin recognition complex, cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prereplication complexes in late mitosis. Mol Cell Biol. 2000;20(22):8602–12. pmid:11046155 doi: 10.1128/mcb.20.22.8602-8612.2000
[62]  Blais A, van Oevelen CJ, Margueron R, Acosta-Alvear D, Dynlacht BD. Retinoblastoma tumor suppressor protein-dependent methylation of histone H3 lysine 27 is associated with irreversible cell cycle exit. J Cell Biol. 2007;179(7):1399–412. doi: 10.1083/jcb.200705051. pmid:18166651
[63]  Asp P, Blum R, Vethantham V, Parisi F, Micsinai M, Cheng J, et al. Genome-wide remodeling of the epigenetic landscape during myogenic differentiation. Proc Natl Acad Sci U S A. 2011;108(22):E149–58. doi: 10.1073/pnas.1102223108. pmid:21551099
[64]  Bowman CJ, Ayer DE, Dynlacht BD. Foxk proteins repress the initiation of starvation-induced atrophy and autophagy programs. Nature cell biology. 2014;16(12):1202–14. doi: 10.1038/ncb3062. pmid:25402684
[65]  Trimarchi T, Bilal E, Ntziachristos P, Fabbri G, Dalla-Favera R, Tsirigos A, et al. Genome-wide mapping and characterization of Notch-regulated long noncoding RNAs in acute leukemia. Cell. 2014;158(3):593–606. doi: 10.1016/j.cell.2014.05.049. pmid:25083870
[66]  Masamha CP, Xia Z, Yang J, Albrecht TR, Li M, Shyu AB, et al. CFIm25 links alternative polyadenylation to glioblastoma tumour suppression. Nature. 2014;510(7505):412–6. Epub 2014/05/13. doi: 10.1038/nature13261. pmid:24814343
[67]  Rosonina E, Yurko N, Li W, Hoque M, Tian B, Manley JL. Threonine-4 of the budding yeast RNAP II CTD couples transcription with Htz1-mediated chromatin remodeling. Proc Natl Acad Sci U S A. 2014;111(33):11924–31. Epub 2014/07/30. doi: 10.1073/pnas.1412802111. pmid:25071213
[68]  Wang AH, Zare H, Mousavi K, Wang C, Moravec CE, Sirotkin HI, et al. The histone chaperone Spt6 coordinates histone H3K27 demethylation and myogenesis. Embo J. 2013;32(8):1075–86. Epub 2013/03/19. doi: 10.1038/emboj.2013.54. pmid:23503590

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133