全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2016 

Chromosomal Integrity after UV Irradiation Requires FANCD2-Mediated Repair of Double Strand Breaks

DOI: 10.1371/journal.pgen.1005792

Full-Text   Cite this paper   Add to My Lib

Abstract:

Fanconi Anemia (FA) is a rare autosomal recessive disorder characterized by hypersensitivity to inter-strand crosslinks (ICLs). FANCD2, a central factor of the FA pathway, is essential for the repair of double strand breaks (DSBs) generated during fork collapse at ICLs. While lesions different from ICLs can also trigger fork collapse, the contribution of FANCD2 to the resolution of replication-coupled DSBs generated independently from ICLs is unknown. Intriguingly, FANCD2 is readily activated after UV irradiation, a DNA-damaging agent that generates predominantly intra-strand crosslinks but not ICLs. Hence, UV irradiation is an ideal tool to explore the contribution of FANCD2 to the DNA damage response triggered by DNA lesions other than ICL repair. Here we show that, in contrast to ICL-causing agents, UV radiation compromises cell survival independently from FANCD2. In agreement, FANCD2 depletion does not increase the amount of DSBs generated during the replication of UV-damaged DNA and is dispensable for UV-induced checkpoint activation. Remarkably however, FANCD2 protects UV-dependent, replication-coupled DSBs from aberrant processing by non-homologous end joining, preventing the accumulation of micronuclei and chromatid aberrations including non-homologous chromatid exchanges. Hence, while dispensable for cell survival, FANCD2 selectively safeguards chromosomal stability after UV-triggered replication stress.

References

[1]  Kottemann MC, Smogorzewska A (2013) Fanconi anaemia and the repair of Watson and Crick DNA crosslinks. Nature 493: 356–363. doi: 10.1038/nature11863. pmid:23325218
[2]  Jones MJ, Huang TT (2012) The Fanconi anemia pathway in replication stress and DNA crosslink repair. Cell Mol Life Sci. doi: 10.1007/s00018-012-1051-0
[3]  Landau M, Krafchik BR (1999) The diagnostic value of cafe-au-lait macules. J Am Acad Dermatol 40: 877–890; quiz 891–872. pmid:10365918 doi: 10.1016/s0190-9622(99)70075-7
[4]  Romick-Rosendale LE, Lui VW, Grandis JR, Wells SI (2013) The Fanconi anemia pathway: repairing the link between DNA damage and squamous cell carcinoma. Mutat Res 743–744: 78–88. doi: 10.1016/j.mrfmmm.2013.01.001. pmid:23333482
[5]  Wang AT, Smogorzewska A (2015) SnapShot: Fanconi Anemia and Associated Proteins. Cell 160: 354–354 e351. doi: 10.1016/j.cell.2014.12.031. pmid:25594185
[6]  Knipscheer P, Raschle M, Smogorzewska A, Enoiu M, Ho TV, et al. (2009) The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair. Science 326: 1698–1701. doi: 10.1126/science.1182372. pmid:19965384
[7]  Boisvert RA, Howlett NG (2014) The Fanconi anemia ID2 complex: dueling saxes at the crossroads. Cell Cycle 13: 2999–3015. doi: 10.4161/15384101.2014.956475. pmid:25486561
[8]  Zhang J, Walter JC (2014) Mechanism and regulation of incisions during DNA interstrand cross-link repair. DNA Repair (Amst) 19: 135–142. doi: 10.1016/j.dnarep.2014.03.018
[9]  Sobeck A, Stone S, Hoatlin ME (2007) DNA structure-induced recruitment and activation of the Fanconi anemia pathway protein FANCD2. Mol Cell Biol 27: 4283–4292. pmid:17420278 doi: 10.1128/mcb.02196-06
[10]  Yuan F, El Hokayem J, Zhou W, Zhang Y (2009) FANCI protein binds to DNA and interacts with FANCD2 to recognize branched structures. J Biol Chem 284: 24443–24452. doi: 10.1074/jbc.M109.016006. pmid:19561358
[11]  Taniguchi T, Garcia-Higuera I, Xu B, Andreassen PR, Gregory RC, et al. (2002) Convergence of the fanconi anemia and ataxia telangiectasia signaling pathways. Cell 109: 459–472. pmid:12086603 doi: 10.1016/s0092-8674(02)00747-x
[12]  Hinz JM, Yamada NA, Salazar EP, Tebbs RS, Thompson LH (2005) Influence of double-strand-break repair pathways on radiosensitivity throughout the cell cycle in CHO cells. DNA Repair (Amst) 4: 782–792. doi: 10.1016/j.dnarep.2005.03.005
[13]  Djuzenova CS, Flentje M (2002) Characterization of Fanconi anemia fibroblasts in terms of clonogenic survival and DNA damage assessed by the Comet assay. Med Sci Monit 8: BR421–430. pmid:12388916
[14]  Collis SJ, Barber LJ, Ward JD, Martin JS, Boulton SJ (2006) C. elegans FANCD2 responds to replication stress and functions in interstrand cross-link repair. DNA Repair (Amst) 5: 1398–1406. doi: 10.1016/j.dnarep.2006.06.010
[15]  Houghtaling S, Newell A, Akkari Y, Taniguchi T, Olson S, et al. (2005) Fancd2 functions in a double strand break repair pathway that is distinct from non-homologous end joining. Hum Mol Genet 14: 3027–3033. pmid:16135554 doi: 10.1093/hmg/ddi334
[16]  Nakanishi K, Cavallo F, Perrouault L, Giovannangeli C, Moynahan ME, et al. (2011) Homology-directed Fanconi anemia pathway cross-link repair is dependent on DNA replication. Nat Struct Mol Biol 18: 500–503. doi: 10.1038/nsmb.2029. pmid:21423196
[17]  Taniguchi T, Garcia-Higuera I, Andreassen PR, Gregory RC, Grompe M, et al. (2002) S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Blood 100: 2414–2420. pmid:12239151 doi: 10.1182/blood-2002-01-0278
[18]  Schlacher K, Christ N, Siaud N, Egashira A, Wu H, et al. (2011) Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145: 529–542. doi: 10.1016/j.cell.2011.03.041. pmid:21565612
[19]  Schlacher K, Wu H, Jasin M (2012) A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell 22: 106–116. doi: 10.1016/j.ccr.2012.05.015. pmid:22789542
[20]  Chaudhury I, Sareen A, Raghunandan M, Sobeck A (2013) FANCD2 regulates BLM complex functions independently of FANCI to promote replication fork recovery. Nucleic Acids Res 41: 6444–6459. doi: 10.1093/nar/gkt348. pmid:23658231
[21]  Chaudhury I, Stroik DR, Sobeck A (2014) FANCD2-controlled chromatin access of the Fanconi-associated nuclease FAN1 is crucial for the recovery of stalled replication forks. Mol Cell Biol 34: 3939–3954. doi: 10.1128/MCB.00457-14. pmid:25135477
[22]  Raghunandan M, Chaudhury I, Kelich SL, Hanenberg H, Sobeck A (2015) FANCD2, FANCJ and BRCA2 cooperate to promote replication fork recovery independently of the Fanconi Anemia core complex. Cell Cycle 14: 342–353. doi: 10.4161/15384101.2014.987614. pmid:25659033
[23]  Dunn J, Potter M, Rees A, Runger TM (2006) Activation of the Fanconi anemia/BRCA pathway and recombination repair in the cellular response to solar ultraviolet light. Cancer Res 66: 11140–11147. pmid:17145857 doi: 10.1158/0008-5472.can-06-0563
[24]  Spivak G, Leadon SA, Vos JM, Meade S, Hanawalt PC, et al. (1988) Enhanced transforming activity of pSV2 plasmids in human cells depends upon the type of damage introduced into the plasmid. Mutat Res 193: 97–108. pmid:2831452 doi: 10.1016/0167-8817(88)90040-5
[25]  Elvers I, Johansson F, Groth P, Erixon K, Helleday T (2011) UV stalled replication forks restart by re-priming in human fibroblasts. Nucleic Acids Res 39: 7049–7057. doi: 10.1093/nar/gkr420. pmid:21646340
[26]  Vallerga MB, Mansilla SF, Federico MB, Bertolin AP, Gottifredi V (2015) Rad51 recombinase prevents Mre11 nuclease-dependent degradation and excessive PrimPol-mediated elongation of nascent DNA after UV irradiation. Proc Natl Acad Sci U S A 112: E6624–6633. doi: 10.1073/pnas.1508543112. pmid:26627254
[27]  Bomgarden RD, Lupardus PJ, Soni DV, Yee MC, Ford JM, et al. (2006) Opposing effects of the UV lesion repair protein XPA and UV bypass polymerase eta on ATR checkpoint signaling. Embo J 25: 2605–2614. pmid:16675950 doi: 10.1038/sj.emboj.7601123
[28]  Hansson J, Keyse SM, Lindahl T, Wood RD (1991) DNA excision repair in cell extracts from human cell lines exhibiting hypersensitivity to DNA-damaging agents. Cancer Res 51: 3384–3390. pmid:2054778
[29]  Mirchandani KD, McCaffrey RM, D'Andrea AD (2008) The Fanconi anemia core complex is required for efficient point mutagenesis and Rev1 foci assembly. DNA Repair (Amst) 7: 902–911. doi: 10.1016/j.dnarep.2008.03.001
[30]  Kalb R, Duerr M, Wagner M, Herterich S, Gross M, et al. (2004) Lack of sensitivity of primary Fanconi's anemia fibroblasts to UV and ionizing radiation. Radiat Res 161: 318–325. pmid:14982482 doi: 10.1667/rr3138
[31]  Liang Q, Dexheimer TS, Zhang P, Rosenthal AS, Villamil MA, et al. (2014) A selective USP1-UAF1 inhibitor links deubiquitination to DNA damage responses. Nat Chem Biol 10: 298–304. doi: 10.1038/nchembio.1455. pmid:24531842
[32]  Godthelp BC, van Buul PP, Jaspers NG, Elghalbzouri-Maghrani E, van Duijn-Goedhart A, et al. (2006) Cellular characterization of cells from the Fanconi anemia complementation group, FA-D1/BRCA2. Mutat Res 601: 191–201. pmid:16920162 doi: 10.1016/j.mrfmmm.2006.07.003
[33]  Yamamoto K, Hirano S, Ishiai M, Morishima K, Kitao H, et al. (2005) Fanconi anemia protein FANCD2 promotes immunoglobulin gene conversion and DNA repair through a mechanism related to homologous recombination. Mol Cell Biol 25: 34–43. pmid:15601828 doi: 10.1128/mcb.25.1.34-43.2005
[34]  Kasahara Y, Nakai Y, Miura D, Yagi K, Hirabayashi K, et al. (1992) Mechanism of induction of micronuclei and chromosome aberrations in mouse bone marrow by multiple treatments of methotrexate. Mutat Res 280: 117–128. pmid:1378536 doi: 10.1016/0165-1218(92)90007-m
[35]  Joenje H, Patel KJ (2001) The emerging genetic and molecular basis of Fanconi anaemia. Nat Rev Genet 2: 446–457. pmid:11389461 doi: 10.1038/35076590
[36]  Shibata A, Jeggo PA (2014) DNA double-strand break repair in a cellular context. Clin Oncol (R Coll Radiol) 26: 243–249. doi: 10.1016/j.clon.2014.02.004
[37]  Ward JD, Barber LJ, Petalcorin MI, Yanowitz J, Boulton SJ (2007) Replication blocking lesions present a unique substrate for homologous recombination. EMBO J 26: 3384–3396. pmid:17611606 doi: 10.1038/sj.emboj.7601766
[38]  Pichierri P, Rosselli F (2004) The DNA crosslink-induced S-phase checkpoint depends on ATR-CHK1 and ATR-NBS1-FANCD2 pathways. EMBO J 23: 1178–1187. pmid:14988723 doi: 10.1038/sj.emboj.7600113
[39]  Eppink B, Tafel AA, Hanada K, van Drunen E, Hickson ID, et al. (2011) The response of mammalian cells to UV-light reveals Rad54-dependent and independent pathways of homologous recombination. DNA Repair (Amst) 10: 1095–1105. doi: 10.1016/j.dnarep.2011.08.006
[40]  Garinis GA, Mitchell JR, Moorhouse MJ, Hanada K, de Waard H, et al. (2005) Transcriptome analysis reveals cyclobutane pyrimidine dimers as a major source of UV-induced DNA breaks. EMBO J 24: 3952–3962. pmid:16252008 doi: 10.1038/sj.emboj.7600849
[41]  Yajima H, Lee KJ, Zhang S, Kobayashi J, Chen BP (2009) DNA double-strand break formation upon UV-induced replication stress activates ATM and DNA-PKcs kinases. J Mol Biol 385: 800–810. doi: 10.1016/j.jmb.2008.11.036. pmid:19071136
[42]  Bryant PE (2004) Repair and chromosomal damage. Radiother Oncol 72: 251–256. pmid:15450722 doi: 10.1016/j.radonc.2004.07.005
[43]  Bertolin A, Mansilla SF, and Gottifredi V. (2015) The elusive identification of translesion DNA synthesis (TLS) regulators: TLS inhibitors in the spotlight. DNA Repair (Amst) in press. doi: 10.1016/j.dnarep.2015.04.027
[44]  Renaud E, Rosselli F (2013) FANC pathway promotes UV-induced stalled replication forks recovery by acting both upstream and downstream Poleta and Rev1. PLoS One 8: e53693. doi: 10.1371/journal.pone.0053693. pmid:23365640
[45]  Park HK, Wang H, Zhang J, Datta S, Fei P (2010) Convergence of Rad6/Rad18 and Fanconi anemia tumor suppressor pathways upon DNA damage. PLoS One 5: e13313. doi: 10.1371/journal.pone.0013313. pmid:20967207
[46]  Kannouche PL, Wing J, Lehmann AR (2004) Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol Cell 14: 491–500. pmid:15149598 doi: 10.1016/s1097-2765(04)00259-x
[47]  Bertolin AP, Mansilla SF, Gottifredi V (2015) The identification of translesion DNA synthesis regulators: Inhibitors in the spotlight. DNA Repair (Amst) 32: 158–164. doi: 10.1016/j.dnarep.2015.04.027
[48]  Howlett NG, Harney JA, Rego MA, Kolling FWt, Glover TW (2009) Functional interaction between the Fanconi Anemia D2 protein and proliferating cell nuclear antigen (PCNA) via a conserved putative PCNA interaction motif. J Biol Chem 284: 28935–28942. doi: 10.1074/jbc.M109.016352. pmid:19704162
[49]  Zellweger R, Dalcher D, Mutreja K, Berti M, Schmid JA, et al. (2015) Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells. J Cell Biol 208: 563–579. doi: 10.1083/jcb.201406099. pmid:25733714
[50]  Soria G, Gottifredi V (2010) PCNA-coupled p21 degradation after DNA damage: The exception that confirms the rule? DNA Repair (Amst) 9: 358–364. doi: 10.1016/j.dnarep.2009.12.003
[51]  Turinetto V, Giachino C (2015) Multiple facets of histone variant H2AX: a DNA double-strand-break marker with several biological functions. Nucleic Acids Res 43: 2489–2498. doi: 10.1093/nar/gkv061. pmid:25712102
[52]  Petermann E, Orta ML, Issaeva N, Schultz N, Helleday T (2010) Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol Cell 37: 492–502. doi: 10.1016/j.molcel.2010.01.021. pmid:20188668
[53]  Goodarzi AA, Jeggo P, Lobrich M (2010) The influence of heterochromatin on DNA double strand break repair: Getting the strong, silent type to relax. DNA Repair (Amst) 9: 1273–1282. doi: 10.1016/j.dnarep.2010.09.013
[54]  Song IY, Barkley LR, Day TA, Weiss RS, Vaziri C (2010) A novel role for Fanconi anemia (FA) pathway effector protein FANCD2 in cell cycle progression of untransformed primary human cells. Cell Cycle 9: 2375–2388. pmid:20519958 doi: 10.4161/cc.9.12.11900
[55]  Jasin M, Rothstein R (2013) Repair of strand breaks by homologous recombination. Cold Spring Harb Perspect Biol 5: a012740. doi: 10.1101/cshperspect.a012740. pmid:24097900
[56]  Latt SA, Schreck RR (1980) Sister chromatid exchange analysis. Am J Hum Genet 32: 297–313. pmid:6992563
[57]  Wilson DM 3rd, Thompson LH (2007) Molecular mechanisms of sister-chromatid exchange. Mutat Res 616: 11–23. pmid:17157333 doi: 10.1016/j.mrfmmm.2006.11.017
[58]  Kakarougkas A, Jeggo PA (2014) DNA DSB repair pathway choice: an orchestrated handover mechanism. Br J Radiol 87: 20130685. doi: 10.1259/bjr.20130685. pmid:24363387
[59]  Panier S, Boulton SJ (2014) Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol Cell Biol 15: 7–18. doi: 10.1038/nrm3719. pmid:24326623
[60]  Chapman JR, Barral P, Vannier JB, Borel V, Steger M, et al. (2013) RIF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection. Mol Cell 49: 858–871. doi: 10.1016/j.molcel.2013.01.002. pmid:23333305
[61]  Naim V, Rosselli F (2009) The FANC pathway and BLM collaborate during mitosis to prevent micro-nucleation and chromosome abnormalities. Nat Cell Biol 11: 761–768. doi: 10.1038/ncb1883. pmid:19465921
[62]  Lukas C, Savic V, Bekker-Jensen S, Doil C, Neumann B, et al. (2011) 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress. Nat Cell Biol 13: 243–253. doi: 10.1038/ncb2201. pmid:21317883
[63]  Betermier M, Bertrand P, Lopez BS (2014) Is non-homologous end-joining really an inherently error-prone process? PLoS Genet 10: e1004086. doi: 10.1371/journal.pgen.1004086. pmid:24453986
[64]  Singh TR, Bakker ST, Agarwal S, Jansen M, Grassman E, et al. (2009) Impaired FANCD2 monoubiquitination and hypersensitivity to camptothecin uniquely characterize Fanconi anemia complementation group M. Blood 114: 174–180. doi: 10.1182/blood-2009-02-207811. pmid:19423727
[65]  Hirano S, Yamamoto K, Ishiai M, Yamazoe M, Seki M, et al. (2005) Functional relationships of FANCC to homologous recombination, translesion synthesis, and BLM. EMBO J 24: 418–427. pmid:15616572 doi: 10.1038/sj.emboj.7600534
[66]  Kelsall IR, Langenick J, MacKay C, Patel KJ, Alpi AF (2012) The Fanconi anaemia components UBE2T and FANCM are functionally linked to nucleotide excision repair. PLoS One 7: e36970. doi: 10.1371/journal.pone.0036970. pmid:22615860
[67]  Xie J, Litman R, Wang S, Peng M, Guillemette S, et al. (2010) Targeting the FANCJ-BRCA1 interaction promotes a switch from recombination to poleta-dependent bypass. Oncogene 29: 2499–2508. doi: 10.1038/onc.2010.18. pmid:20173781
[68]  Oh KS, Bustin M, Mazur SJ, Appella E, Kraemer KH (2011) UV-induced histone H2AX phosphorylation and DNA damage related proteins accumulate and persist in nucleotide excision repair-deficient XP-B cells. DNA Repair (Amst) 10: 5–15. doi: 10.1016/j.dnarep.2010.09.004
[69]  Mateuca RA, Decordier I, Kirsch-Volders M (2012) Cytogenetic methods in human biomonitoring: principles and uses. Methods Mol Biol 817: 305–334. doi: 10.1007/978-1-61779-421-6_15. pmid:22147579
[70]  Love JD, Nguyen HT, Or A, Attri AK, Minton KW (1986) UV-induced interstrand cross-linking of d(GT)n.d(CA)n is facilitated by a structural transition. J Biol Chem 261: 10051–10057. pmid:3733701
[71]  Nejedly K, Kittner R, Kypr J (2001) Genomic DNA regions whose complementary strands are prone to UV light-induced crosslinking. Arch Biochem Biophys 388: 216–224. pmid:11368157 doi: 10.1006/abbi.2001.2280
[72]  L MJaG (1961) Ultraviolet light induced linking of deoxyribomucleic acid strands and its reversal by photoreactivating enzymes. Proc Natl Acad Sci U S A 47: 778–787. pmid:13767019 doi: 10.1073/pnas.47.6.778
[73]  Unno J, Itaya A, Taoka M, Sato K, Tomida J, et al. (2014) FANCD2 binds CtIP and regulates DNA-end resection during DNA interstrand crosslink repair. Cell Rep 7: 1039–1047. doi: 10.1016/j.celrep.2014.04.005. pmid:24794430
[74]  Adamo A, Collis SJ, Adelman CA, Silva N, Horejsi Z, et al. (2010) Preventing nonhomologous end joining suppresses DNA repair defects of Fanconi anemia. Mol Cell 39: 25–35. doi: 10.1016/j.molcel.2010.06.026. pmid:20598602
[75]  Pace P, Mosedale G, Hodskinson MR, Rosado IV, Sivasubramaniam M, et al. (2010) Ku70 corrupts DNA repair in the absence of the Fanconi anemia pathway. Science 329: 219–223. doi: 10.1126/science.1192277. pmid:20538911
[76]  Bunting SF, Callen E, Kozak ML, Kim JM, Wong N, et al. (2012) BRCA1 functions independently of homologous recombination in DNA interstrand crosslink repair. Mol Cell 46: 125–135. doi: 10.1016/j.molcel.2012.02.015. pmid:22445484
[77]  Rosado IV, Langevin F, Crossan GP, Takata M, Patel KJ (2011) Formaldehyde catabolism is essential in cells deficient for the Fanconi anemia DNA-repair pathway. Nat Struct Mol Biol 18: 1432–1434. doi: 10.1038/nsmb.2173. pmid:22081012
[78]  Oberbeck N, Langevin F, King G, de Wind N, Crossan GP, et al. (2014) Maternal aldehyde elimination during pregnancy preserves the fetal genome. Mol Cell 55: 807–817. doi: 10.1016/j.molcel.2014.07.010. pmid:25155611
[79]  Langevin F, Crossan GP, Rosado IV, Arends MJ, Patel KJ (2011) Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice. Nature 475: 53–58. doi: 10.1038/nature10192. pmid:21734703
[80]  Garaycoechea JI, Crossan GP, Langevin F, Daly M, Arends MJ, et al. (2012) Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function. Nature 489: 571–575. doi: 10.1038/nature11368. pmid:22922648
[81]  Nakanishi K, Yang YG, Pierce AJ, Taniguchi T, Digweed M, et al. (2005) Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair. Proc Natl Acad Sci U S A 102: 1110–1115. pmid:15650050 doi: 10.1073/pnas.0407796102
[82]  Chen X, Bosques L, Sung P, Kupfer GM (2015) A novel role for non-ubiquitinated FANCD2 in response to hydroxyurea-induced DNA damage. Oncogene. doi: 10.1038/onc.2015.68
[83]  Spardy N, Duensing A, Charles D, Haines N, Nakahara T, et al. (2007) The human papillomavirus type 16 E7 oncoprotein activates the Fanconi anemia (FA) pathway and causes accelerated chromosomal instability in FA cells. J Virol 81: 13265–13270. pmid:17898070 doi: 10.1128/jvi.01121-07
[84]  Howlett NG, Taniguchi T, Durkin SG, D'Andrea AD, Glover TW (2005) The Fanconi anemia pathway is required for the DNA replication stress response and for the regulation of common fragile site stability. Hum Mol Genet 14: 693–701. pmid:15661754 doi: 10.1093/hmg/ddi065
[85]  Ceccaldi R, Liu JC, Amunugama R, Hajdu I, Primack B, et al. (2015) Homologous-recombination-deficient tumours are dependent on Poltheta-mediated repair. Nature 518: 258–262. doi: 10.1038/nature14184. pmid:25642963
[86]  Garcia-Rubio ML, Perez-Calero C, Barroso SI, Tumini E, Herrera-Moyano E, et al. (2015) The Fanconi Anemia Pathway Protects Genome Integrity from R-loops. PLoS Genet 11: e1005674. doi: 10.1371/journal.pgen.1005674. pmid:26584049
[87]  Jones MJ, Colnaghi L, Huang TT (2012) Dysregulation of DNA polymerase kappa recruitment to replication forks results in genomic instability. EMBO J 31: 908–918. doi: 10.1038/emboj.2011.457. pmid:22157819
[88]  Gravells P, Hoh L, Solovieva S, Patil A, Dudziec E, et al. (2013) Reduced FANCD2 influences spontaneous SCE and RAD51 foci formation in uveal melanoma and Fanconi anaemia. Oncogene 32: 5338–5346. doi: 10.1038/onc.2012.627. pmid:23318456
[89]  Green CM, Almouzni G (2003) Local action of the chromatin assembly factor CAF-1 at sites of nucleotide excision repair in vivo. EMBO J 22: 5163–5174. pmid:14517254 doi: 10.1093/emboj/cdg478
[90]  Kim H, Yang K, Dejsuphong D, D'Andrea AD (2012) Regulation of Rev1 by the Fanconi anemia core complex. Nat Struct Mol Biol 19: 164–170. doi: 10.1038/nsmb.2222. pmid:22266823
[91]  Ahnesorg P, Smith P, Jackson SP (2006) XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining. Cell 124: 301–313. pmid:16439205 doi: 10.1016/j.cell.2005.12.031
[92]  Sekimoto T, Oda T, Kurashima K, Hanaoka F, Yamashita T (2015) Both high-fidelity replicative and low-fidelity Y-family polymerases are involved in DNA rereplication. Mol Cell Biol 35: 699–715. doi: 10.1128/MCB.01153-14. pmid:25487575
[93]  Speroni J, Federico MB, Mansilla SF, Soria G, Gottifredi V (2012) Kinase-independent function of checkpoint kinase 1 (Chk1) in the replication of damaged DNA. Proc Natl Acad Sci U S A 109: 7344–7349. doi: 10.1073/pnas.1116345109. pmid:22529391
[94]  Di Giorgio M, Barquinero JF, Vallerga MB, Radl A, Taja MR, et al. (2011) Biological dosimetry intercomparison exercise: an evaluation of triage and routine mode results by robust methods. Radiat Res 175: 638–649. doi: 10.1667/RR2425.1. pmid:21306200
[95]  Qiu H, Durand K, Rabinovitch-Chable H, Rigaud M, Gazaille V, et al. (2007) Gene expression of HIF-1alpha and XRCC4 measured in human samples by real-time RT-PCR using the sigmoidal curve-fitting method. Biotechniques 42: 355–362. pmid:17390542 doi: 10.2144/000112331
[96]  Xiang Y, Ma N, Wang D, Zhang Y, Zhou J, et al. (2014) MiR-152 and miR-185 co-contribute to ovarian cancer cells cisplatin sensitivity by targeting DNMT1 directly: a novel epigenetic therapy independent of decitabine. Oncogene 33: 378–386. doi: 10.1038/onc.2012.575. pmid:23318422
[97]  Gonzalez Besteiro MA, Gottifredi V (2015) The fork and the kinase: a DNA replication tale from a CHK1 perspective. Mutat Res Rev Mutat Res 763: 168–180. doi: 10.1016/j.mrrev.2014.10.003. pmid:25795119

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133