全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2016 

Chronic DNA Replication Stress Reduces Replicative Lifespan of Cells by TRP53-Dependent, microRNA-Assisted MCM2-7 Downregulation

DOI: 10.1371/journal.pgen.1005787

Full-Text   Cite this paper   Add to My Lib

Abstract:

Circumstances that compromise efficient DNA replication, such as disruptions to replication fork progression, cause a state known as DNA replication stress (RS). Whereas normally proliferating cells experience low levels of RS, excessive RS from intrinsic or extrinsic sources can trigger cell cycle arrest and senescence. Here, we report that a key driver of RS-induced senescence is active downregulation of the Minichromosome Maintenance 2–7 (MCM2-7) factors that are essential for replication origin licensing and which constitute the replicative helicase core. Proliferating cells produce high levels of MCM2-7 that enable formation of dormant origins that can be activated in response to acute, experimentally-induced RS. However, little is known about how physiological RS levels impact MCM2-7 regulation. We found that chronic exposure of primary mouse embryonic fibroblasts (MEFs) to either genetically-encoded or environmentally-induced RS triggered gradual MCM2-7 repression, followed by inhibition of replication and senescence that could be accelerated by MCM hemizygosity. The MCM2-7 reduction in response to RS is TRP53-dependent, and involves a group of Trp53-dependent miRNAs, including the miR-34 family, that repress MCM expression in replication-stressed cells before they undergo terminal cell cycle arrest. miR-34 ablation partially rescued MCM2-7 downregulation and genomic instability in mice with endogenous RS. Together, these data demonstrate that active MCM2-7 repression is a physiologically important mechanism for RS-induced cell cycle arrest and genome maintenance on an organismal level.

References

[1]  Sclafani RA, Holzen TM (2007) Cell cycle regulation of DNA replication. Annu Rev Genet 41: 237–80. doi: 10.1146/annurev.genet.41.110306.130308. pmid:17630848
[2]  Blow JJ, Laskey RA (1988) A role for the nuclear envelope in controlling DNA replication within the cell cycle. Nature 332(6164): 546–8. doi: 10.1038/332546a0. pmid:3357511
[3]  Bell SP, Stillman B (1992) ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature 357(6374): 128–34. doi: 10.1038/357128a0. pmid:1579162
[4]  Bell SP, Dutta A (2002) DNA replication in eukaryotic cells. Annu Rev Biochem 71: 333–74. doi: 10.1146/annurev.biochem.71.110601.135425. pmid:12045100
[5]  Blow JJ, Dutta A (2005) Preventing re-replication of chromosomal DNA. Nat Rev Mol Cell Biol 6(6): 476–86. doi: 10.1038/nrm1663. pmid:15928711
[6]  Moyer SE, Lewis PW, Botchan MR (2006) Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc Natl Acad Sci U S A 103(27): 10236–41. doi: 10.1073/pnas.0602400103. pmid:16798881
[7]  Bochman ML, Schwacha A (2008) The Mcm2-7 complex has in vitro helicase activity. Mol Cell 31(2): 287–93. doi: 10.1016/j.molcel.2008.05.020. pmid:18657510
[8]  Errico A, Costanzo V, Hunt T (2007) Tipin is required for stalled replication forks to resume DNA replication after removal of aphidicolin in Xenopus egg extracts. Proc Natl Acad Sci U S A 104(38): 14929–34. doi: 10.1073/pnas.0706347104. pmid:17846426
[9]  Labib K, Tercero JA, Diffley JF (2000) Uninterrupted MCM2-7 function required for DNA replication fork progression. Science 288(5471): 1643–7. pmid:10834843 doi: 10.1126/science.288.5471.1643
[10]  Bailis JM, Luche DD, Hunter T, Forsburg SL (2008) Minichromosome maintenance proteins interact with checkpoint and recombination proteins to promote s-phase genome stability. Mol Cell Biol 28(5): 1724–38. doi: 10.1128/MCB.01717-07. pmid:18180284
[11]  Zeman MK, Cimprich KA (2014) Causes and consequences of replication stress. Nat Cell Biol 16(1): 2–9. doi: 10.1038/ncb2897. pmid:24366029
[12]  Negrini S, Gorgoulis VG, Halazonetis TD (2010) Genomic instability—an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11(3): 220–8. doi: 10.1038/nrm2858. pmid:20177397
[13]  Allen C, Ashley AK, Hromas R, Nickoloff JA (2011) More forks on the road to replication stress recovery. J Mol Cell Biol 3(1): 4–12. doi: 10.1093/jmcb/mjq049. pmid:21278446
[14]  Woodward AM, Gohler T, Luciani MG, Oehlmann M, Ge X, Gartner A, et al. (2006) Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress. J Cell Biol 173(5): 673–83. doi: 10.1083/jcb.200602108. pmid:16754955
[15]  Feng D, Tu Z, Wu W, Liang C (2003) Inhibiting the expression of DNA replication-initiation proteins induces apoptosis in human cancer cells. Cancer Res 63(21): 7356–64. pmid:14612534
[16]  Ibarra A, Schwob E, Mendez J (2008) Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication. Proc Natl Acad Sci U S A 105(26): 8956–61. doi: 10.1073/pnas.0803978105. pmid:18579778
[17]  Ge XQ, Jackson DA, Blow JJ (2007) Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress. Genes Dev 21(24): 3331–41. doi: 10.1101/gad.457807. pmid:18079179
[18]  Blow JJ, Ge XQ, Jackson DA (2011) How dormant origins promote complete genome replication. Trends Biochem Sci 36(8): 405–14. doi: 10.1016/j.tibs.2011.05.002. pmid:21641805
[19]  Blow JJ, Gillespie PJ (2008) Replication licensing and cancer—a fatal entanglement? Nat Rev Cancer 8(10): 799–806. doi: 10.1038/nrc2500. pmid:18756287
[20]  Shreeram S, Sparks A, Lane DP, Blow JJ (2002) Cell type-specific responses of human cells to inhibition of replication licensing. Oncogene 21(43): 6624–32. doi: 10.1038/sj.onc.1205910. pmid:12242660
[21]  Campisi J, d'Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8(9): 729–40. doi: 10.1038/nrm2233. pmid:17667954
[22]  Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA, et al. (1997) Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91(5): 649–59. pmid:9393858 doi: 10.1016/s0092-8674(00)80452-3
[23]  d'Adda di Fagagna F (2008) Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer 8(7): 512–22. doi: 10.1038/nrc2440. pmid:18574463
[24]  Feng Z, Zhang C, Wu R, Hu W (2011) Tumor suppressor p53 meets microRNAs. J Mol Cell Biol 3(1): 44–50. doi: 10.1093/jmcb/mjq040. pmid:21278451
[25]  He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, et al. (2007) A microRNA component of the p53 tumour suppressor network. Nature 447(7148): 1130–4. doi: 10.1038/nature05939. pmid:17554337
[26]  Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K (2009) Modulation of microRNA processing by p53. Nature 460(7254): 529–33. doi: 10.1038/nature08199. pmid:19626115
[27]  Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of microRNAs on protein output. Nature 455(7209): 64–71. doi: 10.1038/nature07242. pmid:18668037
[28]  Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455(7209): 58–63. doi: 10.1038/nature07228. pmid:18668040
[29]  Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W (2006) Stress-induced reversal of microRNA repression and mRNA P-body localization in human cells. Cold Spring Harb Symp Quant Biol 71: 513–21. doi: 10.1101/sqb.2006.71.038. pmid:17381334
[30]  Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W (2006) Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125(6): 1111–24. doi: 10.1016/j.cell.2006.04.031. pmid:16777601
[31]  Shima N, Alcaraz A, Liachko I, Buske TR, Andrews CA, Munroe RJ, et al. (2007) A viable allele of Mcm4 causes chromosome instability and mammary adenocarcinomas in mice. Nat Genet 39(1): 93–8. doi: 10.1038/ng1936. pmid:17143284
[32]  Chuang CH, Wallace MD, Abratte C, Southard T, Schimenti JC (2010) Incremental genetic perturbations to MCM2-7 expression and subcellular distribution reveal exquisite sensitivity of mice to DNA replication stress. PLoS Genet 6(9): e1001110. doi: 10.1371/journal.pgen.1001110. pmid:20838603
[33]  Chuang CH, Yang D, Bai G, Freeland A, Pruitt SC, Schimenti JC (2012) Post-transcriptional homeostasis and regulation of MCM2-7 in mammalian cells. Nucleic Acids Res 40(11): 4914–24. doi: 10.1093/nar/gks176. pmid:22362746
[34]  Kawabata T, Luebben SW, Yamaguchi S, Ilves I, Matise I, Buske T, et al. (2011) Stalled fork rescue via dormant replication origins in unchallenged S phase promotes proper chromosome segregation and tumor suppression. Mol Cell 41(5): 543–53. doi: 10.1016/j.molcel.2011.02.006. pmid:21362550
[35]  Kunnev D, Rusiniak ME, Kudla A, Freeland A, Cady GK, Pruitt SC (2010) DNA damage response and tumorigenesis in Mcm2-deficient mice. Oncogene 29(25): 3630–8. doi: 10.1038/onc.2010.125. pmid:20440269
[36]  Pruitt SC, Bailey KJ, Freeland A (2007) Reduced Mcm2 expression results in severe stem/progenitor cell deficiency and cancer. Stem Cells 25(12): 3121–32. doi: 10.1634/stemcells.2007-0483. pmid:17717065
[37]  Parrinello S, Samper E, Krtolica A, Goldstein J, Melov S, Campisi J (2003) Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol 5(8): 741–7. doi: 10.1038/ncb1024. pmid:12855956
[38]  Flach J, Bakker ST, Mohrin M, Conroy PC, Pietras EM, Reynaud D, et al. (2014) Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature 512(7513): 198–202. doi: 10.1038/nature13619. pmid:25079315
[39]  Kawabata T, Yamaguchi S, Buske T, Luebben SW, Wallace M, Matise I, et al. (2011) A reduction of licensed origins reveals strain-specific replication dynamics in mice. Mamm Genome 22(9–10): 506–17. doi: 10.1007/s00335-011-9333-7. pmid:21611832
[40]  Kliszczak AE, Rainey MD, Harhen B, Boisvert FM, Santocanale C (2011) DNA mediated chromatin pull-down for the study of chromatin replication. Sci Rep 1: 95. doi: 10.1038/srep00095. pmid:22355613
[41]  Sirbu BM, Couch FB, Feigerle JT, Bhaskara S, Hiebert SW, Cortez D (2011) Analysis of protein dynamics at active, stalled, and collapsed replication forks. Genes Dev 25(12): 1320–7. doi: 10.1101/gad.2053211. pmid:21685366
[42]  Dungrawala H, Rose KL, Bhat KP, Mohni KN, Glick GG, Couch FB, et al. (2015) The Replication Checkpoint Prevents Two Types of Fork Collapse without Regulating Replisome Stability. Mol Cell. doi: 10.1016/j.molcel.2015.07.030. pmid:26365379
[43]  Byun TS, Pacek M, Yee MC, Walter JC, Cimprich KA (2005) Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev 19(9): 1040–52. doi: 10.1101/gad.1301205. pmid:15833913
[44]  Groth A, Corpet A, Cook AJ, Roche D, Bartek J, Lukas J, et al. (2007) Regulation of replication fork progression through histone supply and demand. Science 318(5858): 1928–31. pmid:18096807 doi: 10.1126/science.1148992
[45]  Monasor A, Murga M, Lopez-Contreras AJ, Navas C, Gomez G, Pisano DG, et al. (2013) INK4a/ARF limits the expansion of cells suffering from replication stress. Cell Cycle 12(12): 1948–54. doi: 10.4161/cc.25017. pmid:23676215
[46]  Ahuja D, Saenz-Robles MT, Pipas JM (2005) SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation. Oncogene 24(52): 7729–45. doi: 10.1038/sj.onc.1209046. pmid:16299533
[47]  Lal A, Thomas MP, Altschuler G, Navarro F, O'Day E, Li XL, et al. (2011) Capture of microRNA-bound mRNAs identifies the tumor suppressor miR-34a as a regulator of growth factor signaling. PLoS Genet 7(11): e1002363. doi: 10.1371/journal.pgen.1002363. pmid:22102825
[48]  Kaller M, Liffers ST, Oeljeklaus S, Kuhlmann K, Roh S, Hoffmann R, et al. (2011) Genome-wide characterization of miR-34a induced changes in protein and mRNA expression by a combined pulsed SILAC and microarray analysis. Mol Cell Proteomics 10(8): M111.010462. doi: 10.1074/mcp.M111.010462. pmid:21566225
[49]  Wallace MD, Pfefferle AD, Shen L, McNairn AJ, Cerami EG, Fallon BL, et al. (2012) Comparative oncogenomics implicates the neurofibromin 1 gene (NF1) as a breast cancer driver. Genetics 192(2): 385–96. doi: 10.1534/genetics.112.142802. pmid:22851646
[50]  Madine MA, Swietlik M, Pelizon C, Romanowski P, Mills AD, Laskey RA (2000) The roles of the MCM, ORC, and Cdc6 proteins in determining the replication competence of chromatin in quiescent cells. J Struct Biol 129(2–3): 198–210. doi: 10.1006/jsbi.2000.4218. pmid:10806069
[51]  Lau E, Tsuji T, Guo L, Lu SH, Jiang W (2007) The role of pre-replicative complex (pre-RC) components in oncogenesis. FASEB J 21(14): 3786–94. doi: 10.1096/fj.07-8900rev. pmid:17690155
[52]  Freeman A, Morris LS, Mills AD, Stoeber K, Laskey RA, Williams GH, et al. (1999) Minichromosome maintenance proteins as biological markers of dysplasia and malignancy. Clin Cancer Res 5(8): 2121–32. pmid:10473096
[53]  Gineau L, Cognet C, Kara N, Lach FP, Dunne J, Veturi U, et al. (2012) Partial MCM4 deficiency in patients with growth retardation, adrenal insufficiency, and natural killer cell deficiency. J Clin Invest 122(3): 821–32. doi: 10.1172/JCI61014. pmid:22354167
[54]  Hughes CR, Guasti L, Meimaridou E, Chuang CH, Schimenti JC, King PJ, et al. (2012) MCM4 mutation causes adrenal failure, short stature, and natural killer cell deficiency in humans. J Clin Invest 122(3): 814–20. doi: 10.1172/JCI60224. pmid:22354170
[55]  Das M, Singh S, Pradhan S, Narayan G (2014) MCM Paradox: Abundance of Eukaryotic Replicative Helicases and Genomic Integrity. Mol Biol Int 2014: 574850. doi: 10.1155/2014/574850. pmid:25386362
[56]  Cortez D, Glick G, Elledge SJ (2004) Minichromosome maintenance proteins are direct targets of the ATM and ATR checkpoint kinases. Proc Natl Acad Sci U S A 101(27): 10078–83. doi: 10.1073/pnas.0403410101. pmid:15210935
[57]  Ishimi Y, Komamura-Kohno Y, Kwon HJ, Yamada K, Nakanishi M (2003) Identification of MCM4 as a target of the DNA replication block checkpoint system. J Biol Chem 278(27): 24644–50. doi: 10.1074/jbc.M213252200. pmid:12714602
[58]  Sabatinos SA, Green MD, Forsburg SL (2012) Continued DNA synthesis in replication checkpoint mutants leads to fork collapse. Mol Cell Biol 32(24): 4986–97. doi: 10.1128/MCB.01060-12. pmid:23045396
[59]  Rufini A, Tucci P, Celardo I, Melino G (2013) Senescence and aging: the critical roles of p53. Oncogene 32(43): 5129–43. doi: 10.1038/onc.2012.640. pmid:23416979
[60]  Nevis KR, Cordeiro-Stone M, Cook JG (2009) Origin licensing and p53 status regulate Cdk2 activity during G(1). Cell Cycle 8(12): 1952–63. pmid:19440053 doi: 10.4161/cc.8.12.8811
[61]  Cheng CY, Hwang CI, Corney DC, Flesken-Nikitin A, Jiang L, Oner GM, et al. (2014) miR-34 cooperates with p53 in suppression of prostate cancer by joint regulation of stem cell compartment. Cell Rep 6(6): 1000–7. doi: 10.1016/j.celrep.2014.02.023. pmid:24630988
[62]  Concepcion CP, Han YC, Mu P, Bonetti C, Yao E, D'Andrea A, et al. (2012) Intact p53-dependent responses in miR-34-deficient mice. PLoS Genet 8(7): e1002797. doi: 10.1371/journal.pgen.1002797. pmid:22844244
[63]  Li XC, Schimenti JC, Tye BK (2009) Aneuploidy and improved growth are coincident but not causal in a yeast cancer model. PLoS Biol 7(7): e1000161. doi: 10.1371/journal.pbio.1000161. pmid:19636358
[64]  Alabert C, Bukowski-Wills JC, Lee SB, Kustatscher G, Nakamura K, de Lima Alves F, et al. (2014) Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components. Nat Cell Biol 16(3): 281–93. doi: 10.1038/ncb2918. pmid:24561620
[65]  Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O (2009) Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 4(12): 1798–806. doi: 10.1038/nprot.2009.191. pmid:20010931
[66]  Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10): R106. doi: 10.1186/gb-2010-11-10-r106. pmid:20979621

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133