The C. elegans AWC olfactory neuron pair communicates to specify asymmetric subtypes AWCOFF and AWCON in a stochastic manner. Intercellular communication between AWC and other neurons in a transient NSY-5 gap junction network antagonizes voltage-activated calcium channels, UNC-2 (CaV2) and EGL-19 (CaV1), in the AWCON cell, but how calcium signaling is downregulated by NSY-5 is only partly understood. Here, we show that voltage- and calcium-activated SLO BK potassium channels mediate gap junction signaling to inhibit calcium pathways for asymmetric AWC differentiation. Activation of vertebrate SLO-1 channels causes transient membrane hyperpolarization, which makes it an important negative feedback system for calcium entry through voltage-activated calcium channels. Consistent with the physiological roles of SLO-1, our genetic results suggest that slo-1 BK channels act downstream of NSY-5 gap junctions to inhibit calcium channel-mediated signaling in the specification of AWCON. We also show for the first time that slo-2 BK channels are important for AWC asymmetry and act redundantly with slo-1 to inhibit calcium signaling. In addition, nsy-5-dependent asymmetric expression of slo-1 and slo-2 in the AWCON neuron is necessary and sufficient for AWC asymmetry. SLO-1 and SLO-2 localize close to UNC-2 and EGL-19 in AWC, suggesting a role of possible functional coupling between SLO BK channels and voltage-activated calcium channels in AWC asymmetry. Furthermore, slo-1 and slo-2 regulate the localization of synaptic markers, UNC-2 and RAB-3, in AWC neurons to control AWC asymmetry. We also identify the requirement of bkip-1, which encodes a previously identified auxiliary subunit of SLO-1, for slo-1 and slo-2 function in AWC asymmetry. Together, these results provide an unprecedented molecular link between gap junctions and calcium pathways for terminal differentiation of olfactory neurons.
References
[1]
Alqadah A, Hsieh YW, Chuang CF (2013) microRNA function in left-right neuronal asymmetry: perspectives from C. elegans. Front Cell Neurosci 7: 158. doi: 10.3389/fncel.2013.00158. pmid:24065887
[2]
Galaburda AM, Sherman GF, Rosen GD, Aboitiz F, Geschwind N (1985) Developmental dyslexia: four consecutive patients with cortical anomalies. Ann Neurol 18: 222–233. pmid:4037763 doi: 10.1002/ana.410180210
[3]
Oertel-Knochel V, Linden DE (2011) Cerebral asymmetry in schizophrenia. Neuroscientist 17: 456–467. doi: 10.1177/1073858410386493. pmid:21518811
[4]
Sun T, Walsh CA (2006) Molecular approaches to brain asymmetry and handedness. Nat Rev Neurosci 7: 655–662. pmid:16858393 doi: 10.1038/nrn1930
[5]
Taylor RW, Hsieh YW, Gamse JT, Chuang CF (2010) Making a difference together: reciprocal interactions in C. elegans and zebrafish asymmetric neural development. Development 137: 681–691. doi: 10.1242/dev.038695. pmid:20147373
[6]
Alqadah A, Hsieh YW, Chuang CF (2014) A molecular link between distinct neuronal asymmetries. Cell Cycle 13: 1515–1516. doi: 10.4161/cc.29010. pmid:24769883
[7]
Cochella L, Tursun B, Hsieh YW, Galindo S, Johnston RJ, et al. (2014) Two distinct types of neuronal asymmetries are controlled by the Caenorhabditis elegans zinc finger transcription factor die-1. Genes Dev 28: 34–43. doi: 10.1101/gad.233643.113. pmid:24361693
[8]
Hobert O (2014) Development of left/right asymmetry in the Caenorhabditis elegans nervous system: From zygote to postmitotic neuron. Genesis. doi: 10.1002/dvg.22747
[9]
Hsieh YW, Alqadah A, Chuang CF (2014) Asymmetric neural development in the Caenorhabditis elegans Olfactory system. Genesis. doi: 10.1002/dvg.22744
[10]
Chuang CF, Bargmann CI (2005) A Toll-interleukin 1 repeat protein at the synapse specifies asymmetric odorant receptor expression via ASK1 MAPKKK signaling. Genes Dev 19: 270–281. pmid:15625192 doi: 10.1101/gad.1276505
[11]
Troemel ER, Sagasti A, Bargmann CI (1999) Lateral signaling mediated by axon contact and calcium entry regulates asymmetric odorant receptor expression in C. elegans. Cell 99: 387–398. pmid:10571181 doi: 10.1016/s0092-8674(00)81525-1
[12]
Wes PD, Bargmann CI (2001) C. elegans odour discrimination requires asymmetric diversity in olfactory neurons. Nature 410: 698–701. pmid:11287957
[13]
Bauer Huang SL, Saheki Y, VanHoven MK, Torayama I, Ishihara T, et al. (2007) Left-right olfactory asymmetry results from antagonistic functions of voltage-activated calcium channels and the Raw repeat protein OLRN-1 in C. elegans. Neural Dev 2: 24. pmid:17986337 doi: 10.1186/1749-8104-2-24
[14]
Lesch BJ, Bargmann CI (2010) The homeodomain protein hmbx-1 maintains asymmetric gene expression in adult C. elegans olfactory neurons. Genes Dev 24: 1802–1815. doi: 10.1101/gad.1932610. pmid:20713521
[15]
Lesch BJ, Gehrke AR, Bulyk ML, Bargmann CI (2009) Transcriptional regulation and stabilization of left-right neuronal identity in C. elegans. Genes Dev 23: 345–358. doi: 10.1101/gad.1763509. pmid:19204119
[16]
Sagasti A, Hisamoto N, Hyodo J, Tanaka-Hino M, Matsumoto K, et al. (2001) The CaMKII UNC-43 activates the MAPKKK NSY-1 to execute a lateral signaling decision required for asymmetric olfactory neuron fates. Cell 105: 221–232. pmid:11336672 doi: 10.1016/s0092-8674(01)00313-0
[17]
Tanaka-Hino M, Sagasti A, Hisamoto N, Kawasaki M, Nakano S, et al. (2002) SEK-1 MAPKK mediates Ca2+ signaling to determine neuronal asymmetric development in Caenorhabditis elegans. EMBO Rep 3: 56–62. pmid:11751572 doi: 10.1093/embo-reports/kvf001
[18]
Chang C, Hsieh YW, Lesch BJ, Bargmann CI, Chuang CF (2011) Microtubule-based localization of a synaptic calcium-signaling complex is required for left-right neuronal asymmetry in C. elegans. Development 138: 3509–3518. doi: 10.1242/dev.069740. pmid:21771813
[19]
Schumacher JA, Hsieh YW, Chen S, Pirri JK, Alkema MJ, et al. (2012) Intercellular calcium signaling in a gap junction-coupled cell network establishes asymmetric neuronal fates in C. elegans. Development 139: 4191–4201. doi: 10.1242/dev.083428. pmid:23093425
[20]
Chuang CF, Vanhoven MK, Fetter RD, Verselis VK, Bargmann CI (2007) An innexin-dependent cell network establishes left-right neuronal asymmetry in C. elegans. Cell 129: 787–799. pmid:17512411 doi: 10.1016/j.cell.2007.02.052
[21]
Vanhoven MK, Bauer Huang SL, Albin SD, Bargmann CI (2006) The claudin superfamily protein nsy-4 biases lateral signaling to generate left-right asymmetry in C. elegans olfactory neurons. Neuron 51: 291–302. pmid:16880124 doi: 10.1016/j.neuron.2006.06.029
[22]
Hsieh YW, Chang C, Chuang CF (2012) The microRNA mir-71 inhibits calcium signaling by targeting the TIR-1/Sarm1 adaptor protein to control stochastic L/R neuronal asymmetry in C. elegans. PLoS Genet 8: e1002864. doi: 10.1371/journal.pgen.1002864. pmid:22876200
[23]
Davies AG, Pierce-Shimomura JT, Kim H, VanHoven MK, Thiele TR, et al. (2003) A central role of the BK potassium channel in behavioral responses to ethanol in C. elegans. Cell 115: 655–666. pmid:14675531 doi: 10.1016/s0092-8674(03)00979-6
[24]
Salkoff L, Wei AD, Baban B, Butler A, Fawcett G, et al. (2005) Potassium channels in C. elegans. WormBook: 1–15. doi: 10.1895/wormbook.1.42.1
[25]
Wang ZW, Saifee O, Nonet ML, Salkoff L (2001) SLO-1 potassium channels control quantal content of neurotransmitter release at the C. elegans neuromuscular junction. Neuron 32: 867–881. pmid:11738032 doi: 10.1016/s0896-6273(01)00522-0
[26]
Salkoff L, Butler A, Ferreira G, Santi C, Wei A (2006) High-conductance potassium channels of the SLO family. Nat Rev Neurosci 7: 921–931. pmid:17115074 doi: 10.1038/nrn1992
[27]
Lim HH, Park BJ, Choi HS, Park CS, Eom SH, et al. (1999) Identification and characterization of a putative C. elegans potassium channel gene (Ce-slo-2) distantly related to Ca(2+)-activated K(+) channels. Gene 240: 35–43. pmid:10564810 doi: 10.1016/s0378-1119(99)00398-4
[28]
Yuan A, Dourado M, Butler A, Walton N, Wei A, et al. (2000) SLO-2, a K+ channel with an unusual Cl- dependence. Nat Neurosci 3: 771–779. pmid:10903569 doi: 10.1038/77670
[29]
Joiner WJ, Tang MD, Wang LY, Dworetzky SI, Boissard CG, et al. (1998) Formation of intermediate-conductance calcium-activated potassium channels by interaction of Slack and Slo subunits. Nat Neurosci 1: 462–469. pmid:10196543
[30]
Marrion NV, Tavalin SJ (1998) Selective activation of Ca2+-activated K+ channels by co-localized Ca2+ channels in hippocampal neurons. Nature 395: 900–905. pmid:9804423
[31]
Frokjaer-Jensen C, Davis MW, Hopkins CE, Newman BJ, Thummel JM, et al. (2008) Single-copy insertion of transgenes in Caenorhabditis elegans. Nat Genet 40: 1375–1383. doi: 10.1038/ng.248. pmid:18953339
[32]
Roayaie K, Crump JG, Sagasti A, Bargmann CI (1998) The G alpha protein ODR-3 mediates olfactory and nociceptive function and controls cilium morphogenesis in C. elegans olfactory neurons. Neuron 20: 55–67. pmid:9459442 doi: 10.1016/s0896-6273(00)80434-1
[33]
Frokjaer-Jensen C, Davis MW, Ailion M, Jorgensen EM (2012) Improved Mos1-mediated transgenesis in C. elegans. Nat Methods 9: 117–118. doi: 10.1038/nmeth.1865. pmid:22290181
[34]
Saheki Y, Bargmann CI (2009) Presynaptic CaV2 calcium channel traffic requires CALF-1 and the alpha(2)delta subunit UNC-36. Nat Neurosci 12: 1257–1265. doi: 10.1038/nn.2383. pmid:19718034
[35]
Liu P, Chen B, Wang ZW (2014) SLO-2 potassium channel is an important regulator of neurotransmitter release in Caenorhabditis elegans. Nat Commun 5: 5155. doi: 10.1038/ncomms6155. pmid:25300429
[36]
Oh KH, Abraham LS, Gegg C, Silvestri C, Huang YC, et al. (2015) Presynaptic BK channel localization is dependent on the hierarchical organization of alpha-catulin and dystrobrevin and fine-tuned by CaV2 calcium channels. BMC Neurosci 16: 26. doi: 10.1186/s12868-015-0166-2. pmid:25907097
[37]
Chen B, Ge Q, Xia XM, Liu P, Wang SJ, et al. (2010) A novel auxiliary subunit critical to BK channel function in Caenorhabditis elegans. J Neurosci 30: 16651–16661. doi: 10.1523/JNEUROSCI.3211-10.2010. pmid:21148004
[38]
Abraham LS, Oh HJ, Sancar F, Richmond JE, Kim H (2010) An alpha-catulin homologue controls neuromuscular function through localization of the dystrophin complex and BK channels in Caenorhabditis elegans. PLoS Genet 6. doi: 10.1371/journal.pgen.1001077
[39]
Chen B, Liu P, Wang SJ, Ge Q, Zhan H, et al. (2010) alpha-Catulin CTN-1 is required for BK channel subcellular localization in C. elegans body-wall muscle cells. EMBO J 29: 3184–3195. doi: 10.1038/emboj.2010.194. pmid:20700105
[40]
Kim H, Pierce-Shimomura JT, Oh HJ, Johnson BE, Goodman MB, et al. (2009) The dystrophin complex controls bk channel localization and muscle activity in Caenorhabditis elegans. PLoS Genet 5: e1000780. doi: 10.1371/journal.pgen.1000780. pmid:20019812
[41]
Sancar F, Touroutine D, Gao S, Oh HJ, Gendrel M, et al. (2011) The dystrophin-associated protein complex maintains muscle excitability by regulating Ca(2+)-dependent K(+) (BK) channel localization. J Biol Chem 286: 33501–33510. doi: 10.1074/jbc.M111.227678. pmid:21795674
[42]
Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16: 521–555. pmid:11031246
[43]
Stains JP, Civitelli R (2005) Gap junctions regulate extracellular signal-regulated kinase signaling to affect gene transcription. Mol Biol Cell 16: 64–72. pmid:15525679 doi: 10.1091/mbc.e04-04-0339
[44]
Giepmans BN (2004) Gap junctions and connexin-interacting proteins. Cardiovasc Res 62: 233–245. pmid:15094344 doi: 10.1016/j.cardiores.2003.12.009
[45]
Steciuk M, Cheong M, Waite C, You YJ, Avery L (2014) Regulation of synaptic transmission at the Caenorhabditis elegans M4 neuromuscular junction by an antagonistic relationship between two calcium channels. G3 (Bethesda) 4: 2535–2543. doi: 10.1534/g3.114.014308
[46]
Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71–94. pmid:4366476
[47]
Bessou C, Giugia JB, Franks CJ, Holden-Dye L, Segalat L (1998) Mutations in the Caenorhabditis elegans dystrophin-like gene dys-1 lead to hyperactivity and suggest a link with cholinergic transmission. Neurogenetics 2: 61–72. pmid:9933302 doi: 10.1007/s100480050053
[48]
Flavell SW, Pokala N, Macosko EZ, Albrecht DR, Larsch J, et al. (2013) Serotonin and the neuropeptide PDF initiate and extend opposing behavioral states in C. elegans. Cell 154: 1023–1035. doi: 10.1016/j.cell.2013.08.001. pmid:23972393
[49]
Lee RY, Lobel L, Hengartner M, Horvitz HR, Avery L (1997) Mutations in the alpha1 subunit of an L-type voltage-activated Ca2+ channel cause myotonia in Caenorhabditis elegans. EMBO J 16: 6066–6076. pmid:9321386 doi: 10.1093/emboj/16.20.6066
[50]
Park EC, Horvitz HR (1986) Mutations with dominant effects on the behavior and morphology of the nematode Caenorhabditis elegans. Genetics 113: 821–852. pmid:3744028
[51]
Santi CM, Yuan A, Fawcett G, Wang ZW, Butler A, et al. (2003) Dissection of K+ currents in Caenorhabditis elegans muscle cells by genetics and RNA interference. Proc Natl Acad Sci U S A 100: 14391–14396. pmid:14612577 doi: 10.1073/pnas.1935976100
[52]
Tam T, Mathews E, Snutch TP, Schafer WR (2000) Voltage-gated calcium channels direct neuronal migration in Caenorhabditis elegans. Dev Biol 226: 104–117. pmid:10993677 doi: 10.1006/dbio.2000.9854
[53]
Patel T, Tursun B, Rahe DP, Hobert O (2012) Removal of Polycomb repressive complex 2 makes C. elegans germ cells susceptible to direct conversion into specific somatic cell types. Cell Rep 2: 1178–1186. doi: 10.1016/j.celrep.2012.09.020. pmid:23103163
[54]
Mello C, Fire A (1995) DNA transformation. Methods Cell Biol 48: 451–482. pmid:8531738 doi: 10.1016/s0091-679x(08)61399-0
[55]
Frokjaer-Jensen C, Davis MW, Sarov M, Taylor J, Flibotte S, et al. (2014) Random and targeted transgene insertion in Caenorhabditis elegans using a modified Mos1 transposon. Nat Methods 11: 529–534. doi: 10.1038/nmeth.2889. pmid:24820376
[56]
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, et al. (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9: 676–682. doi: 10.1038/nmeth.2019. pmid:22743772
[57]
Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9: 671–675. pmid:22930834 doi: 10.1038/nmeth.2089
[58]
Didiano D, Hobert O (2008) Molecular architecture of a miRNA-regulated 3' UTR. RNA 14: 1297–1317. doi: 10.1261/rna.1082708. pmid:18463285