[1] | Ihara S, Yoshikawa K, Touhara K. Chemosensory signals and their receptors in the olfactory neural system. Neuroscience [Internet]. IBRO; 2013;254:45–60. Available from:
|
[2] | Sánchez-Gracia a, Vieira FG, Rozas J. Molecular evolution of the major chemosensory gene families in insects. Heredity (Edinb). 2009;103:208–16. doi: 10.1038/hdy.2009.55
|
[3] | Guo S, Kim J. Molecular evolution of Drosophila odorant receptor genes. Mol Biol Evol. 2007;24:1198–207. pmid:17331958 doi: 10.1093/molbev/msm038
|
[4] | Jiang Y, Matsunami H. Mammalian odorant receptors: functional evolution and variation. Curr Opin Neurobiol [Internet]. Elsevier Ltd; 2015;34(Table 1):54–60. Available from:
|
[5] | Kambere MB, Lane RP. Co-regulation of a large and rapidly evolving repertoire of odorant receptor genes. BMC Neurosci. 2007;8 Suppl 3:S2. pmid:17903278 doi: 10.1186/1471-2202-8-s3-s2
|
[6] | Niimura Y, Matsui A, Touhara K. Extreme expansion of the olfactory receptor gene repertoire in African elephants and evolutionary dynamics of orthologous gene groups in 13 placental mammals. Genome Res [Internet]. 2014 Sep;24(9):1485–96. Available from:
|
[7] | Couto A, Alenius M, Dickson BJ. Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr Biol [Internet]. 2005/09/06 ed. 2005 Sep 6 [cited 2013 Oct 27];15(17):1535–47. Available from:
|
[8] | Stocker RF. The organization of the chemosensory system in Drosophila melanogaster: A review. Cell Tissue Res. 1994;275:3–26. pmid:8118845 doi: 10.1007/bf00305372
|
[9] | Vosshall LB, Amrein H, Morozov PS, Rzhetsky A, Axel R. A spatial map of olfactory receptor expression in the Drosophila antenna. Cell [Internet]. 1999 Mar 5;96(5):725–36. Available from:
|
[10] | Shanbhag SR, Müller B, Steinbrecht R. Atlas of olfactory organs of Drosophila melanogaster. Arthropod Struct Dev. 1999;28:377–97. doi: 10.1016/s1467-8039(00)00028-1
|
[11] | Couto A, Alenius M, Dickson BJ. Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr Biol [Internet]. 2005/09/06 ed. 2005;15(17):1535–47. Available from: pmid:16139208
|
[12] | Rodrigues V, Hummel T. Development of the Drosophila olfactory system. Adv Exp Med Biol [Internet]. 2008/08/08 ed. 2008;628:82–101. Available from:
|
[13] | Jones WD, Cayirlioglu P, Kadow IG, Vosshall LB. Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature. 2007;445(January):86–90. pmid:17167414 doi: 10.1038/nature05466
|
[14] | Kwon JY, Dahanukar A, Weiss L a, Carlson JR. The molecular basis of CO2 reception in Drosophila. Proc Natl Acad Sci U S A. 2007;104:3574–8. pmid:17360684 doi: 10.1073/pnas.0700079104
|
[15] | Silbering a. F, Rytz R, Grosjean Y, Abuin L, Ramdya P, Jefferis GSXE, et al. Complementary Function and Integrated Wiring of the Evolutionarily Distinct Drosophila Olfactory Subsystems. J Neurosci. 2011;31(38):13357–75. doi: 10.1523/JNEUROSCI.2360-11.2011. pmid:21940430
|
[16] | Ai M, Blais S, Park J-Y, Min S, Neubert T a, Suh GSB. Ionotropic glutamate receptors IR64a and IR8a form a functional odorant receptor complex in vivo in Drosophila. J Neurosci [Internet]. 2013;33:10741–9. Available from:
|
[17] | Benton R, Vannice KS, Gomez-Diaz C, Vosshall LB. Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell [Internet]. 2009/01/13 ed. 2009;136(1):149–62. Available from:
|
[18] | Vosshall LB, Wong AM, Axel R. An olfactory sensory map in the fly brain. Cell [Internet]. 2000/08/16 ed. 2000;102(2):147–59. Available from:
|
[19] | Vosshall LB, Amrein H, Morozov PS, Rzhetsky A, Axel R. A spatial map of olfactory receptor expression in the Drosophila antenna. Cell. 1999;96:725–36. pmid:10089887 doi: 10.1016/s0092-8674(00)80582-6
|
[20] | Fishilevich E, Vosshall LB. Genetic and functional subdivision of the Drosophila antennal lobe. Curr Biol [Internet]. 2005/09/06 ed. 2005;15(17):1548–53. Available from:
|
[21] | Fuss SH, Ray A. Mechanisms of odorant receptor gene choice in Drosophila and vertebrates. Mol Cell Neurosci [Internet]. Elsevier Inc.; 2009;41:101–12. Available from:
|
[22] | Ressler KJ, Sullivan SL, Buck LB. A zonal organization of odorant receptor gene expression in the olfactory epithelium. Cell [Internet]. 1993/05/07 ed. 1993;73(3):597–609. Available from:
|
[23] | Vassar R, Ngai J, Axel R. Spatial segregation of odorant receptor expression in the mammalian olfactory epithelium. Cell [Internet]. 1993/07/30 ed. 1993;74(2):309–18. Available from:
|
[24] | Dong PDS, Dicks JS, Panganiban G. Distal-less and homothorax regulate multiple targets to pattern the Drosophila antenna. Development. 2002;129:1967–74. pmid:11934862
|
[25] | Dong PD, Chu J, Panganiban G. Coexpression of the homeobox genes Distal-less and homothorax determines Drosophila antennal identity. Development. 2000;127:209–16. pmid:10603339
|
[26] | Yao LC, Liaw GJ, Pai CY, Sun YH. A common mechanism for antenna-to-Leg transformation in Drosophila: suppression of homothorax transcription by four HOM-C genes. Dev Biol. 1999;211:268–76. pmid:10395787 doi: 10.1006/dbio.1999.9309
|
[27] | Postlethwait JH, Schneiderman H a. Pattern formation and determination in the antenna of the homoeotic mutant Antennapedia of Drosophila melanogaster. Dev Biol. 1971;25:606–40. pmid:5001609 doi: 10.1016/0012-1606(71)90008-x
|
[28] | Schneuwly S, Klemenz R, Gehring WJ. Redesigning the body plan of Drosophila by ectopic expression of the homoeotic gene Antennapedia. Nature. p. 816–8. doi: 10.1038/325816a0
|
[29] | Casares F, Mann RS. Control of antennal versus leg development in Drosophila. 1998;392(April):723–6.
|
[30] | Kwon JY, Dahanukar A, Weiss L a., Carlson JR. A map of taste neuron projections in the Drosophila CNS. J Biosci. 2014;39(July):565–74. pmid:25116611 doi: 10.1007/s12038-014-9448-6
|
[31] | Weiss L a., Dahanukar A, Kwon JY, Banerjee D, Carlson JR. The molecular and cellular basis of bitter taste in Drosophila. Neuron [Internet]. Elsevier Inc.; 2011;69(2):258–72. Available from:
|
[32] | Ling F, Dahanukar A, Weiss L a, Kwon JY, Carlson JR. The molecular and cellular basis of taste coding in the legs of Drosophila. J Neurosci [Internet]. 2014;34(21):7148–64. Available from:
|
[33] | Galindo MI, Bishop S a, Greig S, Couso JP. Leg patterning driven by proximal-distal interactions and EGFR signaling. Science. 2002;297(2002):256–9. pmid:12114628 doi: 10.1126/science.1072311
|
[34] | Dong PD, Chu J, Panganiban G. Proximodistal domain specification and interactions in developing Drosophila appendages. Development. 2001;128:2365–72. pmid:11493555
|
[35] | Song E, de Bivort B, Dan C, Kunes S. Determinants of the Drosophila Odorant Receptor Pattern. Dev Cell [Internet]. Elsevier Inc.; 2012;22(2):363–76. Available from:
|
[36] | Morata G. How Drosophila appendages develop. Nat Rev Mol Cell Biol. 2001;2(2):89–97. pmid:11252967 doi: 10.1038/35052047
|
[37] | Duncan DM, Burgess E a., Duncan I. Control of distal antennal identity and tarsal development in Drosophila by spineless-aristapedia, a homolog of the mammalian dioxin receptor. Genes Dev. 1998;12:1290–303. pmid:9573046 doi: 10.1101/gad.12.9.1290
|
[38] | Li Q, Ha TSS, Okuwa S, Wang Y, Wang Q, Millard SSS, et al. Combinatorial Rules of Precursor Specification Underlying Olfactory Neuron Diversity. Curr Biol [Internet]. Elsevier Ltd; 2013 Nov [cited 2013 Nov 25];1–10. Available from:
|
[39] | Baanannou A, Mojica-Vazquez LH, Darras G, Couderc JL, Cribbs DL, Boube M, et al. Drosophila Distal-less and Rotund Bind a Single Enhancer Ensuring Reliable and Robust bric-a-brac2 Expression in Distinct Limb Morphogenetic Fields. PLoS Genet. 2013;9(6). doi: 10.1371/journal.pgen.1003581
|
[40] | Goulding SE, zur Lage P, Jarman a P. amos, a proneural gene for Drosophila olfactory sense organs that is regulated by lozenge. Neuron [Internet]. 2000 Jan;25(1):69–78. Available from:
|
[41] | Gupta BP, Flores G V, Banerjee U, Rodrigues V. Patterning an epidermal field: Drosophila lozenge, a member of the AML-1/Runt family of transcription factors, specifies olfactory sense organ type in a dose-dependent manner. Dev Biol. 1998;203:400–11. pmid:9808789 doi: 10.1006/dbio.1998.9064
|
[42] | Sen S, Hartmann B, Reichert H, Rodrigues V. Expression and function of the empty spiracles gene in olfactory sense organ development of Drosophila melanogaster. Development. 2010;137:3687–95. doi: 10.1242/dev.052407. pmid:20940227
|
[43] | Gupta BP, Rodrigues V. Atonal is a proneural gene for a subset of olfactory sense organs in Drosophila. Genes Cells. 1997;2(Simpson 1990):225–33. pmid:9189759 doi: 10.1046/j.1365-2443.1997.d01-312.x
|
[44] | zur Lage PI, Prentice DR a, Holohan EE, Jarman AP. The Drosophila proneural gene amos promotes olfactory sensillum formation and suppresses bristle formation. Development. 2003;130:4683–93. pmid:12925594 doi: 10.1242/dev.00680
|
[45] | Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res [Internet]. 2009 Jan;37(1):1–13. Available from:
|
[46] | Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc [Internet]. 2009 Jan;4(1):44–57. Available from: doi: 10.1038/nprot.2008.211. pmid:19131956
|
[47] | Kojima T, Sato M, Saigo K. Formation and specification of distal leg segments in Drosophila by dual Bar homeobox genes, BarH1 and BarH2. Development. 2000;127:769–78. pmid:10648235
|
[48] | Couderc J-L, Godt D, Zollman S, Chen J, Li M, Tiong S, et al. The bric à brac locus consists of two paralogous genes encoding BTB/POZ domain proteins and acts as a homeotic and morphogenetic regulator of imaginal development in Drosophila. Development. 2002;129:2419–33. pmid:11973274
|
[49] | Li Q, Barish S, Okuwa S, Volkan PC. Examination of endogenous Rotund expression and function in developing Drosophila olfactory system using CRISPR-Cas9 mediated protein tagging. 2015;
|
[50] | Estella C, Voutev R, Mann RS. A Dynamic Network of Morphogens and Transcription Factors Patterns the Fly Leg [Internet]. 1st ed. Current Topics in Developmental Biology. Elsevier Inc.; 2012. 173–198 p. Available from: doi: http://dx.doi.org/10.1016/B978-0-12-386499-4.00007-0. pmid:22305163
|
[51] | Kojima T. The mechanism of Drosophila leg development along the proximodistal axis. Dev Growth Differ. 2004;46(February):115–29. pmid:15066191 doi: 10.1111/j.1440-169x.2004.00735.x
|
[52] | Natori K, Tajiri R, Furukawa S, Kojima T. Progressive tarsal patterning in the Drosophila by temporally dynamic regulation of transcription factor genes. Dev Biol [Internet]. Elsevier Inc.; 2012;361(2):450–62. Available from:
|
[53] | Giorgianni MW, Mann RS. Establishment of Medial Fates along the Proximodistal Axis of the Drosophila Leg through Direct Activation of dachshund by Distalless. Dev Cell [Internet]. Elsevier Inc.; 2011;20(4):455–68. Available from:
|
[54] | Pueyo JI, Galindo MI, Bishop S a, Couso JP. Proximal-distal leg development in Drosophila requires the apterous gene and the Lim1 homologue dlim1. Development. 2000;127:5391–402. pmid:11076760
|
[55] | Casares F, Mann RS. The ground state of the ventral appendage in Drosophila. Science. 2001;293(2001):1477–80. pmid:11520984 doi: 10.1126/science.1062542
|
[56] | Godt D, Couderc JL, Cramton SE, Laski F a. Pattern formation in the limbs of Drosophila: bric à brac is expressed in both a gradient and a wave-like pattern and is required for specification and proper segmentation of the tarsus. Development. 1993;119:799–812. pmid:7910551
|
[57] | Chu J, Dong PDS, Panganiban G. Limb type-specific regulation of bric a brac contributes to morphological diversity. Development. 2002;129:695–704. pmid:11830570
|
[58] | St Pierre SE, Galindo MI, Couso JP, Thor S. Control of Drosophila imaginal disc development by rotund and roughened eye: differentially expressed transcripts of the same gene encoding functionally distinct zinc finger proteins. Development. 2002;129(5):1273–81. pmid:11874922
|
[59] | Gupta BP, Flores G V, Banerjee U, Rodrigues V. Patterning an epidermal field: Drosophila lozenge, a member of the AML-1/Runt family of transcription factors, specifies olfactory sense organ type in a dose-dependent manner. Dev Biol [Internet]. 1998 Nov 15;203(2):400–11. Available from:
|
[60] | Jarman a. P, Grau Y, Jan LY, Jan Yuh Nung. atonal Is a proneural gene that directs chordotonal organ formation in the Drosophila peripheral nervous system. Cell. 1993;73:1307–21. pmid:8324823 doi: 10.1016/0092-8674(93)90358-w
|
[61] | Endo K, Aoki T, Yoda Y, Kimura K, Hama C. Notch signal organizes the Drosophila olfactory circuitry by diversifying the sensory neuronal lineages. Nat Neurosci. 2007;10:153–60. pmid:17220884 doi: 10.1038/nn1832
|
[62] | Bayraktar OA, Doe CQ. Combinatorial temporal patterning in progenitors expands neural diversity. Nature [Internet]. 2013;498:449–55. Available from:
|
[63] | Jacob J, Maurange C, Gould AP. Temporal control of neuronal diversity: common regulatory principles in insects and vertebrates? Development. 2008;135:3481–9. doi: 10.1242/dev.016931. pmid:18849528
|
[64] | Hoppe R, Breer H, Strotmann J. Promoter motifs of olfactory receptor genes expressed in distinct topographic patterns. Genomics. 2006;87:711–23. pmid:16600568 doi: 10.1016/j.ygeno.2006.02.005
|
[65] | Hoppe R, Frank H, Breer H, Strotmann J. The Clustered Olfactory Receptor Gene Family 262: Genomic Factors The Clustered Olfactory Receptor Gene Family 262: Genomic Organization, Promotor Elements, and Interacting Transcription Factors. Genome Res. 2003;2674–85. pmid:14656972 doi: 10.1101/gr.1372203
|
[66] | Kolterud A, Alenius M, Carlsson L, Bohm S. The Lim homeobox gene Lhx2 is required for olfactory sensory neuron identity. Development. 2004;131:5319–26. pmid:15456728 doi: 10.1242/dev.01416
|
[67] | Jessell TM. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet. 2000;1:20–9. pmid:11262869 doi: 10.1038/35049541
|
[68] | Ulloa F, Briscoe J. Morphogens and the control of cell proliferation and patterning in the spinal cord. Cell Cycle. 2007;6(February 2015):2640–9. pmid:17912034 doi: 10.4161/cc.6.21.4822
|
[69] | Franco SJ, Gil-Sanz C, Martinez-Garay I, Espinosa A, Harkins-Perry SR, Ramos C, et al. Fate-Restricted Neural Progenitors in the Mammalian Cerebral Cortex. Science. 2012. p. 746–9. doi: 10.1126/science.1223616. pmid:22879516
|
[70] | Bayraktar OA, Fuentealba LC, Alvarez-buylla A, Rowitch DH. Astrocyte Development and Heterogeneity. 2015;
|
[71] | Greig LC, Woodworth MB, Galazo MJ, Padmanabhan H, Macklis JD. Molecular logic of neocortical projection neuron specification, development and diversity. Nat Rev Neurosci [Internet]. Nature Publishing Group; 2013;14(11):755–69. Available from:
|
[72] | Hobert O. Neurogenesis in the nematode Caenorhabditis elegans. WormBook. 2010;1–24.
|
[73] | Jafari S, Alkhori L, Schleiffer A, Brochtrup A, Hummel T, Alenius M. Combinatorial activation and repression by seven transcription factors specify drosophila odorant receptor expression. PLoS Biol. 2012;10. doi: 10.1371/journal.pbio.1001280
|
[74] | Tichy AL, Ray A, Carlson JR. A new Drosophila POU gene, pdm3, acts in odor receptor expression and axon targeting of olfactory neurons. J Neurosci. 2008;28(28):7121–9. doi: 10.1523/JNEUROSCI.2063-08.2008. pmid:18614681
|
[75] | Bai L, Carlson JR. Distinct functions of acj6 splice forms in odor receptor gene choice. J Neurosci. 2010;30(14):5028–36. doi: 10.1523/JNEUROSCI.6292-09.2010. pmid:20371823
|
[76] | Ray A, Van Der Goes Van Naters W, Carlson JR. A regulatory code for neuron-specific odor receptor expression. PLoS Biol. 2008;6(5):1069–83. doi: 10.1371/journal.pbio.0060125
|
[77] | Alkhori L, ?st A, Alenius M. The corepressor Atrophin specifies odorant receptor expression in Drosophila. FASEB J. 2014;28:1355–64. doi: 10.1096/fj.13-240325. pmid:24334704
|
[78] | Magklara A, Yen A, Colquitt BM, Clowney EJ, Allen W, Markenscoff-Papadimitriou E, et al. An epigenetic signature for monoallelic olfactory receptor expression. Cell [Internet]. 2011/05/03 ed. 2011;145(4):555–70. Available from:
|
[79] | Lyons DB, Allen WE, Goh T, Tsai L, Barnea G, Lomvardas S. An epigenetic trap stabilizes singular olfactory receptor expression. Cell [Internet]. Elsevier Inc.; 2013;154(2):325–36. Available from:
|
[80] | Sim CK, Perry S, Tharadra SK, Lipsick JS, Ray A. Epigenetic regulation of olfactory receptor gene expression by the Myb-MuvB/dREAM complex. Genes Dev [Internet]. 2012/10/30 ed. 2012;26(22):2483–98. Available from:
|
[81] | Alexander JM, Lomvardas S. Nuclear architecture as an epigenetic regulator of neural development and function. Neuroscience [Internet]. IBRO; 2014;264:39–50. Available from:
|
[82] | Endo K, Karim MR, Taniguchi H, Krejci A, Kinameri E, Siebert M, et al. Chromatin modification of Notch targets in olfactory receptor neuron diversification. Nat Neurosci [Internet]. 2011 [cited 2013 Oct 28];15(2):224–34. Available from:
|
[83] | Morata G. How Drosophila appendages develop. Nat Rev Mol Cell Biol. 2001;2(February):89–97. pmid:11252967 doi: 10.1038/35052047
|
[84] | Akam M, Dawson I, Tear G. Homeotic genes and the control of segment diversity. Development [Internet]. 1988;133:123–33. Available from:
|
[85] | Abzhanov A. Von Baer’s law for the ages: Lost and found principles of developmental evolution. Trends Genet [Internet]. Elsevier Ltd; 2013;29(12):712–22. Available from:
|
[86] | Kurtovic A, Widmer A, Dickson BJ. A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature. 2007;446(March):542–6. pmid:17392786 doi: 10.1038/nature05672
|
[87] | Cayirlioglu P, Kadow IG, Zhan X, Okamura K, Suh GSB, Gunning D, et al. Hybrid neurons in a microRNA mutant are putative evolutionary intermediates in insect CO2 sensory systems. Science. 2008;319(2008):1256–60. doi: 10.1126/science.1149483. pmid:18309086
|
[88] | Jusiak B, Wang F, Karandikar UC, Kwak S, Wang H, Chen R, et al. Genome-wide DNA binding pattern of the homeodomain transcription factor Sine oculis (So) in the developing eye of Drosophila melanogaster. GDATA. Elsevier B.V.; 2014 doi: 10.1016/j.gdata.2014.06.016
|