[1] | Becker PB, Horz W. ATP-dependent nucleosome remodeling. Annual review of biochemistry. 2002;71:247–73. Epub 2002/06/05. pmid:12045097 doi: 10.1146/annurev.biochem.71.110601.135400
|
[2] | Clapier CR, Cairns BR. The biology of chromatin remodeling complexes. Annual review of biochemistry. 2009;78:273–304. doi: 10.1146/annurev.biochem.77.062706.153223. pmid:19355820
|
[3] | Papamichos-Chronakis M, Peterson CL. Chromatin and the genome integrity network. Nature reviews Genetics. 2012;14(1):62–75. doi: 10.1038/nrg3345
|
[4] | Geiman TM, Durum SK, Muegge K. Characterization of gene expression, genomic structure, and chromosomal localization of Hells (Lsh). Genomics. 1998;54(3):477–83. pmid:9878251 doi: 10.1006/geno.1998.5557
|
[5] | Flaus A, Martin DMA, Barton GJ, Owen-Hughes T. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic acids research. 2006;34(10):2887–905. pmid:16738128 doi: 10.1093/nar/gkl295
|
[6] | Brzeski J. Deficient in DNA Methylation 1 (DDM1) Defines a Novel Family of Chromatin-remodeling Factors. Journal of Biological Chemistry. 2002;278(2):823–8. pmid:12403775 doi: 10.1074/jbc.m209260200
|
[7] | Lee DW, Zhang K, Ning Z-Q, Raabe EH, Tintner S, Wieland R, et al. Proliferation-associated SNF2-like Gene (PASG): A SNF2 Family Member Altered in Leukemia1. Cancer research. 2000;60(13):3612–22. pmid:10910076
|
[8] | Geiman TM, Tessarollo L, Anver MR, Kopp JB, Ward JM, Muegge K. Lsh, a SNF2 family member, is required for normal murine development. Biochimica et biophysica acta. 2001;1526(2):211–20. pmid:11325543 doi: 10.1016/s0304-4165(01)00129-5
|
[9] | Raabe EH, Abdurrahman L, Behbehani G, Arceci RJ. An SNF2 factor involved in mammalian development and cellular proliferation. Dev Dyn. 2001;221(1):92–105. pmid:11357197 doi: 10.1002/dvdy.1128
|
[10] | Sun LQ. Growth retardation and premature aging phenotypes in mice with disruption of the SNF2-like gene, PASG. Genes & Development. 2004;18(9):1035–46. doi: 10.1101/gad.1176104
|
[11] | De La Fuente R, Baumann C, Fan T, Schmidtmann A, Dobrinski I, Muegge K. Lsh is required for meiotic chromosome synapsis and retrotransposon silencing in female germ cells. Nature Cell Biology. 2006;8(12):1448–54. pmid:17115026 doi: 10.1038/ncb1513
|
[12] | Zeng W, Baumann C, Schmidtmann A, Honaramooz A, Tang L, Bondareva A, et al. Lymphoid-Specific Helicase (HELLS) Is Essential for Meiotic Progression in Mouse Spermatocytes. Biology of Reproduction. 2011;84(6):1235–41. doi: 10.1095/biolreprod.110.085720. pmid:21349825
|
[13] | Geiman TM, Muegge K. Lsh, an SNF2/helicase family member, is required for proliferation of mature T lymphocytes. P Natl Acad Sci USA. 2000;97(9):4772–7. doi: 10.1073/pnas.97.9.4772
|
[14] | Fan T, Schmidtmann A, Xi S, Briones V, Zhu H, Suh HC, et al. DNA hypomethylation caused by Lsh deletion promotes erythroleukemia development. Epigenetics: official journal of the DNA Methylation Society. 2008;3(3):134–42. doi: 10.4161/epi.3.3.6252
|
[15] | Waseem A, Ali M, Odell EW, Fortune F, Teh M-T. Downstream targets of FOXM1: CEP55 and HELLS are cancer progression markers of head and neck squamous cell carcinoma. Oral Oncology. 2010;46(7):536–42. doi: 10.1016/j.oraloncology.2010.03.022. pmid:20400365
|
[16] | Kim H-E, Symanowski JT, Samlowski EE, Gonzales J, Ryu B. Quantitative measurement of circulating lymphoid-specific helicase (HELLS) gene transcript: a potential serum biomarker for melanoma metastasis. Pigment Cell & Melanoma Research. 2010;23(6):845–8. doi: 10.1111/j.1755-148x.2010.00753.x
|
[17] | Keyes WM, Pecoraro M, Aranda V, Vernersson-Lindahl E, Li W, Vogel H, et al. DeltaNp63alpha is an oncogene that targets chromatin remodeler Lsh to drive skin stem cell proliferation and tumorigenesis. Cell Stem Cell. 2011;8(2):164–76. Epub 2011/02/08. doi: 10.1016/j.stem.2010.12.009. pmid:21295273
|
[18] | von Eyss Bor, Maaskola J, Memczak S, llmann KMo, Schuetz A, Loddenkemper C, et al. The SNF2-like helicase HELLS mediates E2F3-dependent transcription and cellular transformation. The EMBO journal. 2011;31(4):972–85. doi: 10.1038/emboj.2011.451. pmid:22157815
|
[19] | Dennis K. Lsh, a member of the SNF2 family, is required for genome-wide methylation. Genes and Development. 2001;15(22):2940–4. pmid:11711429 doi: 10.1101/gad.929101
|
[20] | Yan Q, Huang J, Fan T, Zhu H, Muegge K. Lsh, a modulator of CpG methylation, is crucial for normal histone methylation. The EMBO journal. 2003;22(19):5154–62. pmid:14517253 doi: 10.1093/emboj/cdg493
|
[21] | Sun L-Q, Arceci RJ. Altered epigenetic patterning leading to replicative senescence and reduced longevity. A role of a novel SNF2 factor, PASG. Cell cycle (Georgetown, Tex). 2005;4(1):3–5. doi: 10.4161/cc.4.1.1341
|
[22] | Muegge K. Lsh, a guardian of heterochromatin at repeat elements. Biochemistry and cell biology = Biochimie et biologie cellulaire. 2005;83(4):548–54. pmid:16094458 doi: 10.1139/o05-119
|
[23] | Zhu H, Geiman TM, Xi S, Jiang Q, Schmidtmann A, Chen T, et al. Lsh is involved in de novo methylation of DNA. The EMBO journal. 2006;25(2):335–45. pmid:16395332 doi: 10.1038/sj.emboj.7600925
|
[24] | Xi S, Geiman TM, Briones V, Guang Tao Y, Xu H, Muegge K. Lsh participates in DNA methylation and silencing of stem cell genes. Stem cells (Dayton, Ohio). 2009;27(11):2691–702. doi: 10.1002/stem.183
|
[25] | Myant K, Termanis A, Sundaram AYM, Boe T, Li C, Merusi C, et al. LSH and G9a/GLP complex are required for developmentally programmed DNA methylation. Genome Research. 2011;21(1):83–94. doi: 10.1101/gr.108498.110. pmid:21149390
|
[26] | Yu W, McIntosh C, Lister R, Zhu I, Han Y, Ren J, et al. Genome-wide DNA methylation patterns in LSH mutant reveals de-repression of repeat elements and redundant epigenetic silencing pathways. Genome Res. 2014;24(10):1613–23. doi: 10.1101/gr.172015.114. pmid:25170028
|
[27] | Kakutani T, Jeddeloh JA, Flowers SK, Munakata K, Richards EJ. Developmental abnormalities and epimutations associated with DNA hypomethylation mutations. Proc Natl Acad Sci U S A. 1996;93(22):12406–11. pmid:8901594 doi: 10.1073/pnas.93.22.12406
|
[28] | Jeddeloh JA, Stokes TL, Richards EJ. Maintenance of genomic methylation requires a SWI2/SNF2-like protein. Nature genetics. 1999;22(1):94–7. pmid:10319870
|
[29] | Gendrel AV. Dependence of Heterochromatic Histone H3 Methylation Patterns on the Arabidopsis Gene DDM1. Science (New York, NY). 2002;297(5588):1871–3. doi: 10.1126/science.1074950
|
[30] | Miura A, Yonebayashi S, Watanabe K, Toyama T, Shimada H, Kakutani T. Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis. Nature. 2001;411(6834):212–4. pmid:11346800 doi: 10.1038/35075612
|
[31] | Elmayan T, Proux F, Vaucheret H. Arabidopsis RPA2: a genetic link among transcriptional gene silencing, DNA repair, and DNA replication. Current biology: CB. 2005;15(21):1919–25. pmid:16271868 doi: 10.1016/j.cub.2005.09.044
|
[32] | Zemach A, Kim MY, Hsieh P-H, Coleman-Derr D, Eshed-Williams L, Thao K, et al. The Arabidopsis Nucleosome Remodeler DDM1 Allows DNA Methyltransferases to Access H1-Containing Heterochromatin. Cell. 2013;153(1):193–205. doi: 10.1016/j.cell.2013.02.033. pmid:23540698
|
[33] | Vongs A, Kakutani T, Martienssen RA, Richards EJ. Arabidopsis thaliana DNA methylation mutants. Science. 1993;260(5116):1926–8. pmid:8316832 doi: 10.1126/science.8316832
|
[34] | Shaked H, Avivi-Ragolsky N, Levy AA. Involvement of the Arabidopsis SWI2/SNF2 Chromatin Remodeling Gene Family in DNA Damage Response and Recombination. Genetics. 2006;173(2):985–94. pmid:16547115 doi: 10.1534/genetics.105.051664
|
[35] | Yao Y, Bilichak A, Golubov A, Kovalchuk I. ddm1 plants are sensitive to methyl methane sulfonate and NaCl stresses and are deficient in DNA repair. Plant Cell Reports. 2012;31(9):1549–61. doi: 10.1007/s00299-012-1269-1. pmid:22538524
|
[36] | Burrage J, Termanis A, Geissner A, Myant K, Gordon K, Stancheva I. The SNF2 family ATPase LSH promotes phosphorylation of H2AX and efficient repair of DNA double-strand breaks in mammalian cells. Journal of cell science. 2012;125(Pt 22):5524–34. doi: 10.1242/jcs.111252. pmid:22946062
|
[37] | Alvaro D, Lisby M, Rothstein R. Genome-Wide Analysis of Rad52 Foci Reveals Diverse Mechanisms Impacting Recombination. PLoS Genetics. 2007;3(12):e228. pmid:18085829 doi: 10.1371/journal.pgen.0030228
|
[38] | Borkovich KA, Alex LA, Yarden O, Freitag M, Turner GE, Read ND, et al. Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev. 2004;68(1):1–108. pmid:15007097 doi: 10.1128/mmbr.68.1.1-108.2004
|
[39] | Tamaru H, Selker EU. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature. 2001;414(6861):277–83. pmid:11713521
|
[40] | Rusche LN, Kirchmaier AL, Rine J. The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annual review of biochemistry. 2003;72:481–516. Epub 2003/04/05. pmid:12676793
|
[41] | Freitag M, Hickey PC, Khlafallah TK, Read ND, Selker EU. HP1 is essential for DNA methylation in Neurospora. Mol Cell. 2004;13(3):427–34. pmid:14967149 doi: 10.1016/s1097-2765(04)00024-3
|
[42] | Lewis ZA, Honda S, Khlafallah TK, Jeffress JK, Freitag M, Mohn F, et al. Relics of repeat-induced point mutation direct heterochromatin formation in Neurospora crassa. Genome Res. 2009;19(3):427–37. Epub 2008/12/19. doi: 10.1101/gr.086231.108. pmid:19092133
|
[43] | Selker EU, Tountas NA, Cross SH, Margolin BS, Murphy JG, Bird AP, et al. The methylated component of the Neurospora crassa genome. Nature. 2003;422(6934):893–7. pmid:12712205 doi: 10.1038/nature01564
|
[44] | Kouzminova EA, Selker EU. dim-2 encodes a DNA-methyltransferase responsible for all known cytosine methylation in Neurospora. EMBO Journal. 2001;20(15):4309–23. pmid:11483533 doi: 10.1093/emboj/20.15.4309
|
[45] | Yarbro JW. Mechanism of action of hydroxyurea. Semin Oncol. 1992;19(3 Suppl 9):1–10.
|
[46] | Haidle CW. Fragmentation of deoxyribonucleic acid by bleomycin. Mol Pharmacol. 1971;7(6):645–52. pmid:4112751
|
[47] | Malik M, Nitiss JL. DNA Repair Functions That Control Sensitivity to Topoisomerase-Targeting Drugs. Eukaryotic Cell. 2004;3(1):82–90. pmid:14871939 doi: 10.1128/ec.3.1.82-90.2004
|
[48] | Fronza G, Gold B. The biological effects of N3-methyladenine. J Cell Biochem. 2004;91(2):250–7. pmid:14743385 doi: 10.1002/jcb.10698
|
[49] | Wyatt MD, Pittman DL. Methylating agents and DNA repair responses: Methylated bases and sources of strand breaks. Chem Res Toxicol. 2006;19(12):1580–94. pmid:17173371 doi: 10.1021/tx060164e
|
[50] | Kato A, Akamatsu Y, Sakuraba Y, Inoue H. The Neurospora crassa mus-19 gene is identical to the qde-3 gene, which encodes a RecQ homologue and is involved in recombination repair and postreplication repair. Curr Genet. 2004;45(1):37–44. pmid:14595518 doi: 10.1007/s00294-003-0459-3
|
[51] | Teng X, Dayhoff-Brannigan M, Cheng WC, Gilbert CE, Sing CN, Diny NL, et al. Genome-wide consequences of deleting any single gene. Mol Cell. 2013;52(4):485–94. doi: 10.1016/j.molcel.2013.09.026. pmid:24211263
|
[52] | Kafer E, Luk D. Sensitivity to bleomycin and hydrogen peroxide of DNA repair-defective mutants in Neurospora crassa. Mutat Res. 1989;217(1):75–81. pmid:2463486 doi: 10.1016/0921-8777(89)90038-4
|
[53] | Mitchell A, Chang HY, Daugherty L, Fraser M, Hunter S, Lopez R, et al. The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res. 2015;43(Database issue):D213–21. doi: 10.1093/nar/gku1243. pmid:25428371
|
[54] | Honda S, Selker EU. Tools for fungal proteomics: multifunctional neurospora vectors for gene replacement, protein expression and protein purification. Genetics. 2009;182(1):11–23. Epub 2009/01/28. doi: 10.1534/genetics.108.098707. pmid:19171944
|
[55] | Polo SE, Jackson SP. Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes & Development. 2011;25(5):409–33. doi: 10.1101/gad.2021311
|
[56] | Kinoshita E, Kinoshita-Kikuta E, Koike T. Phos-tag SDS-PAGE systems for phosphorylation profiling of proteins with a wide range of molecular masses under neutral pH conditions. Proteomics. 2012;12(2):192–202. doi: 10.1002/pmic.201100524. pmid:22121028
|
[57] | Baryshnikova A, Costanzo M, Myers CL, Andrews B, Boone C. Genetic interaction networks: toward an understanding of heritability. Annu Rev Genomics Hum Genet. 2013;14:111–33. doi: 10.1146/annurev-genom-082509-141730. pmid:23808365
|
[58] | Inoue H. Exploring the processes of DNA repair and homologous integration in Neurospora. Mutat Res. 2011;728(1–2):1–11. doi: 10.1016/j.mrrev.2011.06.003. pmid:21757027
|
[59] | Watanabe K, Sakuraba Y, Inoue H. Genetic and molecular characterization of Neurospora crassa mus-23: a gene involved in recombinational repair. Mol Gen Genet. 1997;256(4):436–45. Epub 1997/12/11. pmid:9393441 doi: 10.1007/s004380050587
|
[60] | Lundin C, North M, Erixon K, Walters K, Jenssen D, Goldman ASH, et al. Methyl methanesulfonate (MMS) produces heat-labile DNA damage but no detectable in vivo DNA double-strand breaks. Nucleic Acids Res. 2005;33(12):3799–811. pmid:16009812 doi: 10.1093/nar/gks589
|
[61] | Groth P, Ausl?nder S, Majumder MM, Schultz N, Johansson F, Petermann E, et al. Methylated DNA Causes a Physical Block to Replication Forks Independently of Damage Signalling, O6-Methylguanine or DNA Single-Strand Breaks and Results in DNA Damage. J Mol Biol. 2010;402(1):70–82. doi: 10.1016/j.jmb.2010.07.010. pmid:20643142
|
[62] | Nikolova T, Ensminger M, L?brich M, Kaina B. Homologous recombination protects mammalian cells from replication-associated DNA double-strand breaks arising in response to methyl methanesulfonate. DNA repair. 2010;9(10):1050–63. doi: 10.1016/j.dnarep.2010.07.005. pmid:20708982
|
[63] | Fu D, Calvo JA, Samson LD. SERIES: Genomic instability in cancer Balancing repair and tolerance of DNA damage caused by alkylating agents. Nature reviews Cancer. 2012;12(2):104–20. doi: 10.1038/nrc3185. pmid:22237395
|
[64] | Xiao W, Chow BL, Hanna M, Doetsch PW. Deletion of the MAG1 DNA glycosylase gene suppresses alkylation-induced killing and mutagenesis in yeast cells lacking AP endonucleases. Mutation Research/DNA Repair. 2001;487(3–4):137–47. doi: 10.1016/s0921-8777(01)00113-6
|
[65] | Sobol RW, Kartalou M, Almeida KH, Joyce DF, Engelward BP, Horton JK, et al. Base Excision Repair Intermediates Induce p53-independent Cytotoxic and Genotoxic Responses. Journal of Biological Chemistry. 2003;278(41):39951–9. pmid:12882965 doi: 10.1074/jbc.m306592200
|
[66] | Czaja W, Mao P, Smerdon MJ. Chromatin remodelling complex RSC promotes base excision repair in chromatin of Saccharomyces cerevisiae. DNA repair. 2014;16:35–43. doi: 10.1016/j.dnarep.2014.01.002. pmid:24674626
|
[67] | Ishibashi K, Suzuki K, Ando Y, Takakura C, Inoue H. Nonhomologous chromosomal integration of foreign DNA is completely dependent on MUS-53 (human Lig4 homolog) in Neurospora. P Natl Acad Sci USA. 2006;103(40):14871–6. doi: 10.1073/pnas.0604477103
|
[68] | Ninomiya Y, Suzuki K, Ishii C, Inoue H. Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci U S A. 2004;101(33):12248–53. Epub 2004/08/10. pmid:15299145 doi: 10.1073/pnas.0402780101
|
[69] | Cheng R, Baker TI, Cords CE, Radloff RJ. mei-3, a recombination and repair gene of Neurospora crassa, encodes a RecA-like protein. Mutation Research/DNA Repair. 1993;294(3):223–34. doi: 10.1016/0921-8777(93)90005-2
|
[70] | Costanzo V. Brca2, Rad51 and Mre11: performing balancing acts on replication forks. DNA repair. 2011;10(10):1060–5. Epub 2011/09/09. doi: 10.1016/j.dnarep.2011.07.009. pmid:21900052
|
[71] | Mehta A, Haber JE. Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harbor perspectives in biology. 2014;6(9):a016428. doi: 10.1101/cshperspect.a016428. pmid:25104768
|
[72] | Jones RM, Petermann E. Replication fork dynamics and the DNA damage response. Biochem J. 2012;443(1):13–26. doi: 10.1042/BJ20112100. pmid:22417748
|
[73] | Petermann E, Orta ML, Issaeva N, Schultz N, Helleday T. Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol Cell. 2010;37(4):492–502. doi: 10.1016/j.molcel.2010.01.021. pmid:20188668
|
[74] | Lewis ZA, Adhvaryu KK, Honda S, Shiver AL, Knip M, Sack R, et al. DNA methylation and normal chromosome behavior in Neurospora depend on five components of a histone methyltransferase complex, DCDC. PLoS Genet. 2010;6(11):e1001196. Epub 2010/11/17. doi: 10.1371/journal.pgen.1001196. pmid:21079689
|
[75] | Tkach JM, Yimit A, Lee AY, Riffle M, Costanzo M, Jaschob D, et al. Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nat Cell Biol. 2012;14(9):966–76. —supplementary-information. doi: 10.1038/ncb2549. pmid:22842922
|
[76] | Gallina I, Colding C, Henriksen P, Beli P, Nakamura K, Offman J, et al. Cmr1/WDR76 defines a nuclear genotoxic stress body linking genome integrity and protein quality control. Nat Commun. 2015;6:6533. doi: 10.1038/ncomms7533. pmid:25817432
|
[77] | Gilmore JM, Sardiu ME, Venkatesh S, Stutzman B, Peak A, Seidel CW, et al. Characterization of a Highly Conserved Histone Related Protein, Ydl156w, and Its Functional Associations Using Quantitative Proteomic Analyses. Molecular & Cellular Proteomics. 2012;11(4). doi: 10.1074/mcp.m111.011544
|
[78] | Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, Litvinkova L, et al. A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci U S A. 2006;103(27):10352–7. pmid:16801547 doi: 10.1073/pnas.0601456103
|
[79] | McCluskey K, Wiest A, Plamann M. The Fungal Genetics Stock Center: a repository for 50 years of fungal genetics research. Journal of biosciences. 2010;35(1):119–26. pmid:20413916 doi: 10.1007/s12038-010-0014-6
|
[80] | Davis RH, de Serres FJ. [4] Genetic and microbiological research techniques for Neurospora crassa Methods in enzymology. 1970;17:79–143. doi: 10.1016/0076-6879(71)17168-6
|
[81] | Pall ML. The use of Ignite (Basta;glufosinate;phosphinothricin) to select transformants of bar-containing plasmids in Neurospora crassa. Fungal Genetics Newsletter. 1993;40(1):58.
|
[82] | Margolin BS, Freitag M, Selker EU. Improved plasmids for gene targeting at the his-3 locus of Neurospora crassa by electroporation. Fungal Genetics Newsletter. 1997;44:34–6.
|
[83] | Pomraning KR, Smith KM, Freitag M. Genome-wide high throughput analysis of DNA methylation in eukaryotes. Methods. 2009;47(3):142–50. Epub 2008/10/28. doi: 10.1016/j.ymeth.2008.09.022. pmid:18950712
|
[84] | Honda S, Selker EU. Direct interaction between DNA methyltransferase DIM-2 and HP1 is required for DNA methylation in Neurospora crassa. Mol Cell Biol. 2008;28(19):6044–55. Epub 2008/08/06. doi: 10.1128/MCB.00823-08. pmid:18678653
|
[85] | Honda S, Lewis ZA, Huarte M, Cho LY, David LL, Shi Y, et al. The DMM complex prevents spreading of DNA methylation from transposons to nearby genes in Neurospora crassa. Genes Dev. 2010;24(5):443–54. Epub 2010/02/09. doi: 10.1101/gad.1893210. pmid:20139222
|
[86] | Urich MA, Nery JR, Lister R, Schmitz RJ, Ecker JR. MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing. Nat Protoc. 2015;10(3):475–83. doi: 10.1038/nprot.2014.114. pmid:25692984
|
[87] | Schmitz RJ, He Y, Valdes-Lopez O, Khan SM, Joshi T, Urich MA, et al. Epigenome-wide inheritance of cytosine methylation variants in a recombinant inbred population. Genome Res. 2013;23(10):1663–74. doi: 10.1101/gr.152538.112. pmid:23739894
|
[88] | Schultz MD, He Y, Whitaker JW, Hariharan M, Mukamel EA, Leung D, et al. Human body epigenome maps reveal noncanonical DNA methylation variation. Nature. 2015. doi: 10.1038/nature14465
|
[89] | Schultz MD, Schmitz RJ, Ecker JR. 'Leveling' the playing field for analyses of single-base resolution DNA methylomes. Trends Genet. 2012;28(12):583–5. doi: 10.1016/j.tig.2012.10.012. pmid:23131467
|