Base J, β-D-glucosyl-hydroxymethyluracil, is a chromatin modification of thymine in the nuclear DNA of flagellated protozoa of the order Kinetoplastida. In Trypanosoma brucei, J is enriched, along with histone H3 variant (H3.V), at sites involved in RNA Polymerase (RNAP) II termination and telomeric sites involved in regulating variant surface glycoprotein gene (VSG) transcription by RNAP I. Reduction of J in T. brucei indicated a role of J in the regulation of RNAP II termination, where the loss of J at specific sites within polycistronic gene clusters led to read-through transcription and increased expression of downstream genes. We now demonstrate that the loss of H3.V leads to similar defects in RNAP II termination within gene clusters and increased expression of downstream genes. Gene derepression is intensified upon the subsequent loss of J in the H3.V knockout. mRNA-seq indicates gene derepression includes VSG genes within the silent RNAP I transcribed telomeric gene clusters, suggesting an important role for H3.V in telomeric gene repression and antigenic variation. Furthermore, the loss of H3.V at regions of overlapping transcription at the end of convergent gene clusters leads to increased nascent RNA and siRNA production. Our results suggest base J and H3.V can act independently as well as synergistically to regulate transcription termination and expression of coding and non-coding RNAs in T. brucei, depending on chromatin context (and transcribing polymerase). As such these studies provide the first direct evidence for histone H3.V negatively influencing transcription elongation to promote termination.
References
[1]
Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, et al. The genome of the African trypanosome Trypanosoma brucei. Science. 2005; 309:416–22. pmid:16020726 doi: 10.1126/science.1112642
[2]
Jackson AP, Sanders M, Berry A, McQuillan J, Aslett MA, Quail MA, et al. The genome sequence of Trypanosoma brucei gambiense, causative agent of chronic human african trypanosomiasis. PLoS Negl Trop Dis. 2010; 4:e658. doi: 10.1371/journal.pntd.0000658. pmid:20404998
[3]
El-Sayed NM, Myler PJ, Blandin G, Berriman M, Crabtree J, Aggarwal G, et al. Comparative genomics of trypanosomatid parasitic protozoa. Science. 2005; 309:404–9. pmid:16020724 doi: 10.1126/science.1112181
[4]
Martinez-Calvillo S, Yan S, Nguyen D, Fox M, Stuart K, Myler PJ. Transcription of Leishmania major Friedlin chromosome 1 initiates in both directions within a single region. Mol Cell. 2003; 11:1291–9. pmid:12769852 doi: 10.1016/s1097-2765(03)00143-6
[5]
Boothroyd JC, Cross GA. Transcripts coding for variant surface glycoproteins of Trypanosoma brucei have a short, identical exon at their 5' end. Gene. 1982; 20:281–9. pmid:7166234 doi: 10.1016/0378-1119(82)90046-4
[6]
Van der Ploeg LH, Liu AY, Michels PA, De Lange TD, Borst P, Majumder HK, et al. RNA splicing is required to make the messenger RNA for a variant surface antigen in trypanosomes. Nucleic Acids Res. 1982; 10:3591–604. pmid:6287414 doi: 10.1093/nar/10.12.3591
[7]
De Lange T, Liu AY, Van der Ploeg LH, Borst P, Tromp MC, Van Boom JH. Tandem repetition of the 5' mini-exon of variant surface glycoprotein genes: a multiple promoter for VSG gene transcription? Cell. 1983; 34:891–900. pmid:6313212 doi: 10.1016/0092-8674(83)90546-9
[8]
Nelson RG, Parsons M, Barr PJ, Stuart K, Selkirk M, Agabian N. Sequences homologous to the variant antigen mRNA spliced leader are located in tandem repeats and variable orphons in Trypanosoma brucei. Cell. 1983; 34:901–9. pmid:6313213 doi: 10.1016/0092-8674(83)90547-0
[9]
Sutton RE, Boothroyd JC. Evidence for Trans splicing in trypanosomes. Cell. 1986; 47:527–35. pmid:3022935 doi: 10.1016/0092-8674(86)90617-3
[10]
Agabian N. Trans splicing of nuclear pre-mRNAs. Cell. 1990; 61:1157–60. pmid:2142018 doi: 10.1016/0092-8674(90)90674-4
[11]
Clayton CE. Life without transcriptional control? From fly to man and back again. EMBO J. 2002; 21:1881–8. pmid:11953307 doi: 10.1093/emboj/21.8.1881
[12]
Campbell DA, Thomas S, Sturm NR. Transcription in kinetoplastid protozoa: why be normal? Microbes and Infection. 2003; 5:1231–40. pmid:14623019 doi: 10.1016/j.micinf.2003.09.005
[13]
Cliffe LJ, Siegel TN, Marshall M, Cross GA, Sabatini R. Two thymidine hydroxylases differentially regulate the formation of glucosylated DNA at regions flanking polymerase II polycistronic transcription units throughout the genome of Trypanosoma brucei. Nucleic Acids Res. 2010; 38:3923–35. doi: 10.1093/nar/gkq146. pmid:20215442
[14]
Siegel TN, Hekstra DR, Kemp LE, Figueiredo LM, Lowell JE, Fenyo D, et al. Four histone variants mark the boundaries of polycistronic transcription units in Trypanosoma brucei. Genes Dev. 2009; 23:1063–76. doi: 10.1101/gad.1790409. pmid:19369410
[15]
Respuela P, Ferella M, Rada-Iglesias A, Aslund L. Histone acetylation and methylation at sites initiating divergent polycistronic transcription in Trypanosoma cruzi. J Biol Chem. 2008; 283:15884–92. doi: 10.1074/jbc.M802081200. pmid:18400752
[16]
Thomas S, Green A, Sturm NR, Campbell DA, Myler PJ. Histone acetylations mark origins of polycistronic transcription in Leishmania major. BMC Genomics. 2009; 10:152. doi: 10.1186/1471-2164-10-152. pmid:19356248
[17]
Wright JR, Siegel TN, Cross GA. Histone H3 trimethylated at lysine 4 is enriched at probable transcription start sites in Trypanosoma brucei. Mol Biochem Parasitol. 2010; 172:141–4. doi: 10.1016/j.molbiopara.2010.03.013. pmid:20347883
[18]
van Leeuwen F, Taylor MC, Mondragon A, Moreau H, Gibson W, Kieft R, et al. beta-D-glucosyl-hydroxymethyluracil is a conserved DNA modification in kinetoplastid protozoans and is abundant in their telomeres. Proc Natl Acad Sci U S A. 1998; 95:2366–71. pmid:9482891 doi: 10.1073/pnas.95.5.2366
[19]
Dooijes D, Chaves I, Kieft R, Dirks-Mulder A, Martin W, Borst P. Base J originally found in kinetoplastid is also a minor constituent of nuclear DNA of Euglena gracilis. Nucleic Acids Res. 2000; 28:3017–21. pmid:10931915 doi: 10.1093/nar/28.16.3017
[20]
Gommers-Ampt JH, Van Leeuwen F, de Beer AL, Vliegenthart JF, Dizdaroglu M, Kowalak JA, et al. beta-D-glucosyl-hydroxymethyluracil: a novel modified base present in the DNA of the parasitic protozoan T. brucei. Cell. 1993; 75:1129–36. pmid:8261512 doi: 10.1016/0092-8674(93)90322-h
[21]
van Leeuwen F, Kieft R, Cross M, Borst P. Tandemly repeated DNA is a target for the partial replacement of thymine by beta-D-glucosal-hydroxymethyluracil in Trypanosoma brucei. Mol Biochem Parasitol. 2000; 109:133–45. pmid:10960172 doi: 10.1016/s0166-6851(00)00247-4
[22]
van Leeuwen F, Wijsman ER, Kieft R, van der Marel GA, van Boom JH, Borst P. Localization of the modified base J in telomeric VSG gene expression sites of Trypanosoma brucei. Genes Dev. 1997; 11:3232–41. pmid:9389654 doi: 10.1101/gad.11.23.3232
[23]
van Leeuwen F, Wijsman ER, Kuyl-Yeheskiely E, van der Marel GA, van Boom JH, Borst P. The telomeric GGGTTA repeats of Trypanosoma brucei contain the hypermodified base J in both strands. Nucleic Acids Res. 1996; 24:2476–82. pmid:8692684 doi: 10.1093/nar/24.13.2476
[24]
Ekanayake DK, Minning T, Weatherly B, Gunasekera K, Nilsson D, Tarleton R, et al. Epigenetic regulation of transcription and virulence in Trypanosoma cruzi by O-linked thymine glucosylation of DNA. Mol Cell Biol. 2011; 31:1690–700. doi: 10.1128/MCB.01277-10. pmid:21321080
[25]
van Luenen HG, Farris C, Jan S, Genest PA, Tripathi P, Velds A, et al. Glucosylated hydroxymethyluracil, DNA base J, prevents transcriptional readthrough in Leishmania. Cell. 2012; 150:909–21. doi: 10.1016/j.cell.2012.07.030. pmid:22939620
[26]
Borst P, Sabatini R. Base J: discovery, biosynthesis, and possible functions. Annu Rev Microbiol. 2008; 62:235–51. doi: 10.1146/annurev.micro.62.081307.162750. pmid:18729733
[27]
Horn D. Antigenic variation in African trypanosomes. Mol Biochem Parasitol. 2014; 195:123–9. doi: 10.1016/j.molbiopara.2014.05.001. pmid:24859277
[28]
Horn D, McCulloch R. Molecular mechanisms underlying the control of antigenic variation in African trypanosomes. Curr Opin Microbiol. 2010; 13:700–5. doi: 10.1016/j.mib.2010.08.009. pmid:20884281
[29]
Bullard W, Lopes da Rosa-Spiegler J, Liu S, Wang Y, Sabatini R. Identification of the glucosyltransferase that converts hydroxymethyluracil to base J in the trypanosomatid genome. J Biol Chem. 2014; 289:20273–82. doi: 10.1074/jbc.M114.579821. pmid:24891501
[30]
Sekar A, Merritt C, Baugh L, Stuart K, Myler PJ. Tb927.10.6900 encodes the glucosyltransferase involved in synthesis of base J in Trypanosoma brucei. Mol Biochem Parasitol. 2014; 196:9–11. doi: 10.1016/j.molbiopara.2014.07.005. pmid:25064607
[31]
Cliffe LJ, Hirsch G, Wang J, Ekanayake D, Bullard W, Hu M, et al. JBP1 and JBP2 Proteins Are Fe2+/2-Oxoglutarate-dependent Dioxygenases Regulating Hydroxylation of Thymidine Residues in Trypanosome DNA. J Biol Chem. 2012; 287:19886–95. doi: 10.1074/jbc.M112.341974. pmid:22514282
[32]
Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009; 324:930–5. doi: 10.1126/science.1170116. pmid:19372391
[33]
Iyer LM, Tahiliani M, Rao A, Aravind L. Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle. 2009; 8:1698–710. pmid:19411852 doi: 10.4161/cc.8.11.8580
[34]
Reynolds D, Cliffe L, Sabatini R. 2-Oxoglutarate-dependent hydroxylases involved in DNA base J (β-D-Glucopyranosyloxymethyluracil) synthesis. In: Schofield CJ, Hausinger RP, editors. 2-Oxoglutarate-Dependent Oxygenases. 1. Cambridge, U.K: Royal Society of Chemistry; 2015.
[35]
Reynolds D, Cliffe L, Forstner KU, Hon CC, Siegel TN, Sabatini R. Regulation of transcription termination by glucosylated hydroxymethyluracil, base J, in Leishmania major and Trypanosoma brucei. Nucleic Acids Res. 2014; 42:9717–29. doi: 10.1093/nar/gku714. pmid:25104019
[36]
Cliffe LJ, Kieft R, Southern T, Birkeland SR, Marshall M, Sweeney K, et al. JBP1 and JBP2 are two distinct thymidine hydroxylases involved in J biosynthesis in genomic DNA of African trypanosomes. Nucleic Acids Res. 2009; 37:1452–62. doi: 10.1093/nar/gkn1067. pmid:19136460
[37]
Ekanayake D, Sabatini R. Epigenetic regulation of Pol II transcription initiation in Trypanosoma cruzi: Modulation of nucleosome abundance, histone modification and polymerase occupancy by O-linked thymine DNA glucosylation. Eukaryot Cell. 2011; 10:1465–72. doi: 10.1128/EC.05185-11. pmid:21926332
[38]
Weber CM, Henikoff S. Histone variants: dynamic punctuation in transcription. Genes Dev. 2014; 28:672–82. doi: 10.1101/gad.238873.114. pmid:24696452
[39]
Tolstorukov Michael Y, Goldman Joseph A, Gilbert C, Ogryzko V, Kingston Robert E, Park Peter J. Histone Variant H2A.Bbd Is Associated with Active Transcription and mRNA Processing in Human Cells. Mol Cell. 2012; 47:596–607. doi: 10.1016/j.molcel.2012.06.011. pmid:22795134
[40]
Weber CM, Ramachandran S, Henikoff S. Nucleosomes are context-specific, H2A.Z-modulated barriers to RNA polymerase. Mol Cell. 2014; 53:819–30. doi: 10.1016/j.molcel.2014.02.014. pmid:24606920
[41]
Chen Y, Chen Q, McEachin RC, Cavalcoli JD, Yu X. H2A.B facilitates transcription elongation at methylated CpG loci. Genome Res. 2014; 24:570–9. doi: 10.1101/gr.156877.113. pmid:24402521
[42]
Draker R, Sarcinella E, Cheung P. USP10 deubiquitylates the histone variant H2A.Z and both are required for androgen receptor-mediated gene activation. Nucleic Acids Research. 2011; 39:3529–42. doi: 10.1093/nar/gkq1352. pmid:21245042
[43]
Cuadrado A, Corrado N, Perdiguero E, Lafarga V, Mu?oz-Canoves P, Nebreda AR. Essential role of p18Hamlet/SRCAP-mediated histone H2A.Z chromatin incorporation in muscle differentiation. The EMBO Journal. 2010; 29:2014–25. doi: 10.1038/emboj.2010.85. pmid:20473270
[44]
Gévry N, Hardy S, Jacques P-é, Laflamme L, Svotelis A, Robert F, et al. Histone H2A.Z is essential for estrogen receptor signaling. Genes Dev. 2009; 23:1522–33. doi: 10.1101/gad.1787109. pmid:19515975
[45]
B?nisch C, Hake SB. Histone H2A variants in nucleosomes and chromatin: more or less stable? Nucleic Acids Research. 2012; 40:10719–41. doi: 10.1093/nar/gks865. pmid:23002134
[46]
Chen Y, Chen Q, McEachin R, Cavalcoli J, Yu X. H2A.B facilitates transcription elongation at methylated CpG loci. Genome Res. 2014. doi: 10.1101/gr.156877.113
[47]
Gamble MJ, Frizzell KM, Yang C, Krishnakumar R, Kraus WL. The histone variant macroH2A1 marks repressed autosomal chromatin, but protects a subset of its target genes from silencing. Genes Dev. 2010; 24:21–32. doi: 10.1101/gad.1876110. pmid:20008927
[48]
Buschbeck M, Uribesalgo I, Wibowo I, Rue P, Martin D, Gutierrez A, et al. The histone variant macroH2A is an epigenetic regulator of key developmental genes. Nat Struct Mol Biol. 2009; 16:1074–9. doi: 10.1038/nsmb.1665. pmid:19734898
[49]
Mito Y, Henikoff JG, Henikoff S. Genome-scale profiling of histone H3.3 replacement patterns. Nat Genet. 2005; 37:1090–7. pmid:16155569 doi: 10.1038/ng1637
[50]
Delbarre E, Jacobsen BM, Reiner AH, S?rensen AL, Küntziger T, Collas P. Chromatin Environment of Histone Variant H3.3 Revealed by Quantitative Imaging and Genome-scale Chromatin and DNA Immunoprecipitation. Mol Biol Cell. 2010; 21:1872–84. doi: 10.1091/mbc.E09-09-0839. pmid:20375147
[51]
Ooi SL, Henikoff JG, Henikoff S. A native chromatin purification system for epigenomic profiling in Caenorhabditis elegans. Nucleic Acids Research. 2010; 38:e26–e. doi: 10.1093/nar/gkp1090. pmid:19966274
[52]
Wong LH, Ren H, Williams E, McGhie J, Ahn S, Sim M, et al. Histone H3.3 incorporation provides a unique and functionally essential telomeric chromatin in embryonic stem cells. Genome Res. 2009; 19:404–14. doi: 10.1101/gr.084947.108. pmid:19196724
[53]
Santenard A, Ziegler-Birling C, Koch M, Tora L, Bannister AJ, Torres-Padilla M-E. Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3. Nat Cell Biol. 2010; 12:853–62. doi: 10.1038/ncb2089. pmid:20676102
[54]
Drané P, Ouararhni K, Depaux A, Shuaib M, Hamiche A. The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev. 2010; 24:1253–65. doi: 10.1101/gad.566910. pmid:20504901
[55]
Lewis PW, Elsaesser SJ, Noh K-M, Stadler SC, Allis CD. Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proceedings of the National Academy of Sciences. 2010; 107:14075–80. doi: 10.1073/pnas.1008850107
[56]
Elsasser SJ, Noh KM, Diaz N, Allis CD, Banaszynski LA. Histone H3.3 is required for endogenous retroviral element silencing in embryonic stem cells. Nature. 2015; 522:240–4. doi: 10.1038/nature14345. pmid:25938714
[57]
Banaszynski Laura A, Wen D, Dewell S, Whitcomb Sarah J, Lin M, Diaz N, et al. Hira-Dependent Histone H3.3 Deposition Facilitates PRC2 Recruitment at Developmental Loci in ES Cells. Cell. 2013; 155:107–20. doi: 10.1016/j.cell.2013.08.061. pmid:24074864
[58]
Goldberg AD, Banaszynski LA, Noh K-M, Lewis PW, Elsaesser SJ, Stadler S, et al. Distinct Factors Control Histone Variant H3.3 Localization at Specific Genomic Regions. Cell. 2010; 140:678–91. doi: 10.1016/j.cell.2010.01.003. pmid:20211137
[59]
Law C, Cheung P. Histone Variants and Transcription Regulation. In: Kundu TK, editor. Epigenetics: Development and Disease. Subcellular Biochemistry. 61: Springer Netherlands; 2013. p. 319–41.
[60]
Lowell JE, Cross GA. A variant histone H3 is enriched at telomeres in Trypanosoma brucei. J Cell Sci. 2004; 117:5937–47. pmid:15522895 doi: 10.1242/jcs.01515
[61]
Tschudi C, Fau SH, Ullu E. Small interfering RNA-producing loci in the ancient parasitic eukaryote Trypanosoma brucei. BMC Genomics. 2012; 13. doi: 10.1186/1471-2164-13-427
[62]
Zheng LL, Wen YZ, Yang JH, Liao JY, Shao P, Xu H, et al. Comparative transcriptome analysis of small noncoding RNAs in different stages of Trypanosoma brucei. RNA. 2013; 19:863–75. doi: 10.1261/rna.035683.112. pmid:23704326
[63]
Wen Y-Z, Zheng L-L, Liao J-Y, Wang M-H, Wei Y, Guo X-M, et al. Pseudogene-derived small interference RNAs regulate gene expression in African Trypanosoma brucei. Proceedings of the National Academy of Sciences. 2011; 108:8345–50. doi: 10.1073/pnas.1103894108
[64]
Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: Double-Stranded RNA Directs the ATP-Dependent Cleavage of mRNA at 21 to 23 Nucleotide Intervals. Cell. 2000; 101:25–33. pmid:10778853
[65]
Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 2001; 15:188–200. pmid:11157775 doi: 10.1101/gad.862301
[66]
Allen E, Xie Z, Gustafson AM, Carrington JC. microRNA-Directed Phasing during Trans-Acting siRNA Biogenesis in Plants. Cell. 2005; 121:207–21. pmid:15851028 doi: 10.1016/j.cell.2005.04.004
[67]
MacRae IJ, Zhou K, Li F, Repic A, Brooks AN, Cande WZ, et al. Structural Basis for Double-Stranded RNA Processing by Dicer. Science. 2006; 311:195–8. pmid:16410517 doi: 10.1126/science.1121638
[68]
Akiyoshi B, Gull K. Discovery of unconventional kinetochores in kinetoplastids. Cell. 2014; 156:1247–58. doi: 10.1016/j.cell.2014.01.049. pmid:24582333
[69]
Haenni S, Renggli CK, Fragoso CM, Oberle M, Roditi I. The procyclin-associated genes of Trypanosoma brucei are not essential for cyclical transmission by tsetse. Mol Biochem Parasitol. 2006; 150:144–56. pmid:16930740 doi: 10.1016/j.molbiopara.2006.07.005
[70]
Kim HS, Park SH, Gunzl A, Cross GA. MCM-BP is required for repression of life-cycle specific genes transcribed by RNA polymerase I in the mammalian infectious form of Trypanosoma brucei. PLoS One. 2013; 8:e57001. doi: 10.1371/journal.pone.0057001. pmid:23451133
[71]
Pena AC, Pimentel MR, Manso H, Vaz-Drago R, Pinto-Neves D, Aresta-Branco F, et al. Trypanosoma brucei histone H1 inhibits RNA polymerase I transcription and is important for parasite fitness in vivo. Mol Microbiol. 2014; 93:645–63. doi: 10.1111/mmi.12677. pmid:24946224
[72]
Liniger M, Bodenmüller K, Pays E, Gallati S, Roditi I. Overlapping sense and antisense transcription units in Trypanosoma brucei. Mol Microbiol. 2001; 40:869–78. pmid:11401694 doi: 10.1046/j.1365-2958.2001.02426.x
[73]
Vanhamme L, Poelvoorde P, Pays A, Tebabi P, Van Xong H, Pays E. Differential RNA elongation controls the variant surface glycoprotein gene expression sites of Trypanosoma brucei. Mol Microbiol. 2000; 36:328–40. pmid:10792720 doi: 10.1046/j.1365-2958.2000.01844.x
[74]
Hertz-Fowler C, Figueiredo LM, Quail MA, Becker M, Jackson A, Bason N, et al. Telomeric expression sites are highly conserved in Trypanosoma brucei. PLoS One. 2008; 3:e3527. doi: 10.1371/journal.pone.0003527. pmid:18953401
[75]
Yang X, Figueiredo LM, Espinal A, Okubo E, Li B. RAP1 is essential for silencing telomeric variant surface glycoprotein genes in Trypanosoma brucei. Cell. 2009; 137:99–109. doi: 10.1016/j.cell.2009.01.037. pmid:19345190
[76]
Stanne TM, Kushwaha M, Wand M, Taylor JE, Rudenko G. TbISWI regulates multiple polymerase I (Pol I)-transcribed loci and is present at Pol II transcription boundaries in Trypanosoma brucei. Eukaryot Cell. 2011; 10:964–76. doi: 10.1128/EC.05048-11. pmid:21571922
[77]
Kelly S, Kramer S, Schwede A, Maini PK, Gull K, Carrington M. Genome organization is a major component of gene expression control in response to stress and during the cell division cycle in trypanosomes. Open Biol. 2012; 2:120033. doi: 10.1098/rsob.120033. pmid:22724062
[78]
Schildkraut E, Miller CA, Nickoloff JA. Transcription of a Donor Enhances Its Use during Double-Strand Break-Induced Gene Conversion in Human Cells. Mol Cell Biol. 2006; 26:3098–105. pmid:16581784 doi: 10.1128/mcb.26.8.3098-3105.2006
[79]
Alsford S, Horn D. RNA polymerase I transcription stimulates homologous recombination in T. brucei. Mol Biochem Parasitol. 2007; 153: doi: 10.1016/j.molbiopara.2007.01.013.
[80]
Hall JPJ, Wang H, Barry JD. Mosaic VSGs and the Scale of Trypanosoma brucei Antigenic Variation. PLoS Pathog. 2013; 9:e1003502. doi: 10.1371/journal.ppat.1003502. pmid:23853603
[81]
Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, et al. Tet Proteins Can Convert 5-Methylcytosine to 5-Formylcytosine and 5-Carboxylcytosine. Science. 2011; 333:1300–3. doi: 10.1126/science.1210597. pmid:21778364
[82]
Bernards A, van Harten-Loosbroek N, Borst P. Modification of telomeric DNA in Trypanosoma brucei; a role in antigenic variation? Nucleic Acids Research. 1984; 12:4153–70. pmid:6328412 doi: 10.1093/nar/12.10.4153
[83]
Haenni S, Studer E, Burkard GS, Roditi I. Bidirectional silencing of RNA polymerase I transcription by a strand switch region in Trypanosoma brucei. Nucleic Acids Res. 2009; 37:5007–18. doi: 10.1093/nar/gkp513. pmid:19531741
Anderson BA, Wong IL, Baugh L, Ramasamy G, Myler PJ, Beverley SM. Kinetoplastid-specific histone variant functions are conserved in Leishmania major. Mol Biochem Parasitol. 2013; 191:53–7. doi: 10.1016/j.molbiopara.2013.09.005. pmid:24080031
[86]
Lye LF, Owens K, Shi H, Murta SM, Vieira AC, Turco SJ, et al. Retention and loss of RNA interference pathways in trypanosomatid protozoans. PLoS Pathog. 2010; 6:e1001161. doi: 10.1371/journal.ppat.1001161. pmid:21060810
[87]
Robinson KA, Beverley SM. Improvements in transfection efficiency and tests of RNA interference (RNAi) approaches in the protozoan parasite Leishmania. Mol Biochem Parasitol. 2003; 128:217–28. pmid:12742588 doi: 10.1016/s0166-6851(03)00079-3
[88]
Djikeng A, Shi H, Tschudi C, Ullu E. RNA interference in Trypanosoma brucei: cloning of small interfering RNAs provides evidence for retroposon-derived 24-26-nucleotide RNAs. RNA. 2001; 7:1522–30. pmid:11720282 doi: 10.3410/f.1002653.29354
[89]
DiPaolo C, Kieft R, Cross M, Sabatini R. Regulation of trypanosome DNA glycosylation by a SWI2/SNF2-like protein. Mol Cell. 2005; 17:441–51. pmid:15694344 doi: 10.1016/j.molcel.2004.12.022
[90]
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012; 9:357–9. doi: 10.1038/nmeth.1923
[91]
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009; 25:2078–9. doi: 10.1093/bioinformatics/btp352. pmid:19505943
[92]
Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, et al. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 2010; 38:D457–62. doi: 10.1093/nar/gkp851. pmid:19843604
[93]
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal. 2011; 17:10–2. doi: 10.14806/ej.17.1.200
[94]
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010; 26:841–2. doi: 10.1093/bioinformatics/btq033. pmid:20110278
[95]
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014; 30:2114–20. doi: 10.1093/bioinformatics/btu170. pmid:24695404
[96]
Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotech. 2013; 31:46–53. doi: 10.1038/nbt.2450
[97]
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008; 5:621–8. doi: 10.1038/nmeth.1226. pmid:18516045
[98]
Roditi I, Schwarz H, Pearson TW, Beecroft RP, Liu MK, Richardson JP, et al. Procyclin gene expression and loss of the variant surface glycoprotein during differentiation of Trypanosoma brucei. J Cell Biol. 1989; 108:737–46. pmid:2645304 doi: 10.1083/jcb.108.2.737
[99]
Al Husini N, Kudla P, Ansari A. A role for CF1A 3' end processing complex in promoter-associated transcription. PLoS Genet. 2013; 9:e1003722. doi: 10.1371/journal.pgen.1003722. pmid:23966880