全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2016 

Post-transcriptional Control of Tumor Cell Autonomous Metastatic Potential by CCR4-NOT Deadenylase CNOT7

DOI: 10.1371/journal.pgen.1005820

Full-Text   Cite this paper   Add to My Lib

Abstract:

Accumulating evidence supports the role of an aberrant transcriptome as a driver of metastatic potential. Deadenylation is a general regulatory node for post-transcriptional control by microRNAs and other determinants of RNA stability. Previously, we demonstrated that the CCR4-NOT scaffold component Cnot2 is an inherited metastasis susceptibility gene. In this study, using orthotopic metastasis assays and genetically engineered mouse models, we show that one of the enzymatic subunits of the CCR4-NOT complex, Cnot7, is also a metastasis modifying gene. We demonstrate that higher expression of Cnot7 drives tumor cell autonomous metastatic potential, which requires its deadenylase activity. Furthermore, metastasis promotion by CNOT7 is dependent on interaction with CNOT1 and TOB1. CNOT7 ribonucleoprotein-immunoprecipitation (RIP) and integrated transcriptome wide analyses reveal that CNOT7-regulated transcripts are enriched for a tripartite 3’UTR motif bound by RNA-binding proteins known to complex with CNOT7, TOB1, and CNOT1. Collectively, our data support a model of CNOT7, TOB1, CNOT1, and RNA-binding proteins collectively exerting post-transcriptional control on a metastasis suppressive transcriptional program to drive tumor cell metastasis.

References

[1]  Fidler IJ. Critical determinants of metastasis. Semin Cancer Biol. 2002;12(2):89–96. pmid:12027580. doi: 10.1006/scbi.2001.0416
[2]  Mani SA, Yang J, Brooks M, Schwaninger G, Zhou A, Miura N, et al. Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers. Proc Natl Acad Sci U S A. 2007;104(24):10069–74. Epub 2007/06/01. 0703900104 [pii] doi: 10.1073/pnas.0703900104 pmid:17537911.
[3]  Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004;117(7):927–39. doi: 10.1016/j.cell.2004.06.006 pmid:15210113.
[4]  Ma L, Reinhardt F, Pan E, Soutschek J, Bhat B, Marcusson EG, et al. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nature biotechnology. 2010;28(4):341–7. doi: 10.1038/nbt.1618 pmid:20351690; PubMed Central PMCID: PMC2852471.
[5]  Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q, Bos PD, et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature. 2008;451(7175):147–52. doi: 10.1038/nature06487 pmid:18185580; PubMed Central PMCID: PMC2782491.
[6]  Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V, et al. Genetics of gene expression surveyed in maize, mouse and man. Nature. 2003;422(6929):297–302. pmid:12646919. doi: 10.1038/nature01434
[7]  Chesler EJ, Lu L, Shou S, Qu Y, Gu J, Wang J, et al. Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet. 2005;37(3):233–42. pmid:15711545. doi: 10.1038/ng1518
[8]  Lifsted T, Le Voyer T, Williams M, Muller W, Klein-Szanto A, Buetow KH, et al. Identification of inbred mouse strains harboring genetic modifiers of mammary tumor age of onset and metastatic progression. Int J Cancer. 1998;77(4):640–4. Epub 1998/07/29. pmid:9679770. doi: 10.1002/(sici)1097-0215(19980812)77:4<640::aid-ijc26>3.0.co;2-8
[9]  Lukes L, Crawford NP, Walker R, Hunter KW. The origins of breast cancer prognostic gene expression profiles. Cancer Res. 2009;69(1):310–8. Epub 2009/01/02. 69/1/310 [pii] doi: 10.1158/0008-5472.CAN-08-3520 pmid:19118016.
[10]  Faraji F, Hu Y, Wu G, Goldberger NE, Walker RC, Zhang J, et al. An integrated systems genetics screen reveals the transcriptional structure of inherited predisposition to metastatic disease. Genome Res. 2014;24(2):227–40. Epub 2013/12/11. doi: 10.1101/gr.166223.113 pmid:24322557; PubMed Central PMCID: PMC3912413.
[11]  Albert TK, Lemaire M, van Berkum NL, Gentz R, Collart MA, Timmers HT. Isolation and characterization of human orthologs of yeast CCR4-NOT complex subunits. Nucleic Acids Res. 2000;28(3):809–17. Epub 2000/01/19. pmid:10637334; PubMed Central PMCID: PMC102560.
[12]  Collart MA, Panasenko OO. The Ccr4—not complex. Gene. 2012;492(1):42–53. Epub 2011/10/27. doi: 10.1016/j.gene.2011.09.033 pmid:22027279.
[13]  Wahle E, Winkler GS. RNA decay machines: deadenylation by the Ccr4-not and Pan2-Pan3 complexes. Biochimica et biophysica acta. 2013;1829(6–7):561–70. Epub 2013/01/23. doi: 10.1016/j.bbagrm.2013.01.003 pmid:23337855.
[14]  Jayne S, Zwartjes CG, van Schaik FM, Timmers HT. Involvement of the SMRT/NCoR-HDAC3 complex in transcriptional repression by the CNOT2 subunit of the human Ccr4-Not complex. Biochem J. 2006;398(3):461–7. Epub 2006/05/23. doi: 10.1042/BJ20060406 pmid:16712523; PubMed Central PMCID: PMC1559471.
[15]  Winkler GS, Mulder KW, Bardwell VJ, Kalkhoven E, Timmers HT. Human Ccr4-Not complex is a ligand-dependent repressor of nuclear receptor-mediated transcription. Embo J. 2006;25(13):3089–99. Epub 2006/06/17. doi: 10.1038/sj.emboj.7601194 pmid:16778766; PubMed Central PMCID: PMC1500986.
[16]  Viswanathan P, Ohn T, Chiang YC, Chen J, Denis CL. Mouse CAF1 can function as a processive deadenylase/3'-5'-exonuclease in vitro but in yeast the deadenylase function of CAF1 is not required for mRNA poly(A) removal. J Biol Chem. 2004;279(23):23988–95. Epub 2004/03/27. doi: 10.1074/jbc.M402803200 pmid:15044470.
[17]  Tucker M, Valencia-Sanchez MA, Staples RR, Chen J, Denis CL, Parker R. The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell. 2001;104(3):377–86. pmid:11239395. doi: 10.1016/s0092-8674(01)00225-2
[18]  Yamashita A, Chang TC, Yamashita Y, Zhu W, Zhong Z, Chen CY, et al. Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nature structural & molecular biology. 2005;12(12):1054–63. doi: 10.1038/nsmb1016 pmid:16284618.
[19]  Ito K, Inoue T, Yokoyama K, Morita M, Suzuki T, Yamamoto T. CNOT2 depletion disrupts and inhibits the CCR4-NOT deadenylase complex and induces apoptotic cell death. Genes Cells. 2011;16(4):368–79. Epub 2011/02/09. doi: 10.1111/j.1365-2443.2011.01492.x pmid:21299754.
[20]  Decker CJ, Parker R. A turnover pathway for both stable and unstable mRNAs in yeast: evidence for a requirement for deadenylation. Genes & development. 1993;7(8):1632–43. pmid:8393418. doi: 10.1101/gad.7.8.1632
[21]  Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P, Izaurralde E. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev. 2006;20(14):1885–98. Epub 2006/07/04. doi: 10.1101/gad.1424106 pmid:16815998; PubMed Central PMCID: PMC1522082.
[22]  Fenger-Gron M, Fillman C, Norrild B, Lykke-Andersen J. Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Molecular cell. 2005;20(6):905–15. doi: 10.1016/j.molcel.2005.10.031 pmid:16364915.
[23]  Hosoda N, Funakoshi Y, Hirasawa M, Yamagishi R, Asano Y, Miyagawa R, et al. Anti-proliferative protein Tob negatively regulates CPEB3 target by recruiting Caf1 deadenylase. The EMBO journal. 2011;30(7):1311–23. doi: 10.1038/emboj.2011.37 pmid:21336257; PubMed Central PMCID: PMC3094127.
[24]  Suzuki A, Igarashi K, Aisaki K, Kanno J, Saga Y. NANOS2 interacts with the CCR4-NOT deadenylation complex and leads to suppression of specific RNAs. Proc Natl Acad Sci U S A. 2010;107(8):3594–9. Epub 2010/02/06. doi: 10.1073/pnas.0908664107 pmid:20133598; PubMed Central PMCID: PMC2840499.
[25]  Van Etten J, Schagat TL, Hrit J, Weidmann CA, Brumbaugh J, Coon JJ, et al. Human Pumilio proteins recruit multiple deadenylases to efficiently repress messenger RNAs. J Biol Chem. 2012;287(43):36370–83. Epub 2012/09/08. doi: 10.1074/jbc.M112.373522 pmid:22955276; PubMed Central PMCID: PMC3476303.
[26]  Loh B, Jonas S, Izaurralde E. The SMG5-SMG7 heterodimer directly recruits the CCR4-NOT deadenylase complex to mRNAs containing nonsense codons via interaction with POP2. Genes Dev. 2013;27(19):2125–38. Epub 2013/10/12. doi: 10.1101/gad.226951.113 pmid:24115769; PubMed Central PMCID: PMC3850096.
[27]  Crawford NP, Alsarraj J, Lukes L, Walker RC, Officewala JS, Yang HH, et al. Bromodomain 4 activation predicts breast cancer survival. Proc Natl Acad Sci U S A. 2008;105(17):6380–5. Epub 2008/04/23. 0710331105 [pii] doi: 10.1073/pnas.0710331105 pmid:18427120.
[28]  Pei XF, Noble MS, Davoli MA, Rosfjord E, Tilli MT, Furth PA, et al. Explant-cell culture of primary mammary tumors from MMTV-c-Myc transgenic mice. In Vitro Cell Dev Biol Anim. 2004;40(1–2):14–21. pmid:15180438. doi: 10.1290/1543-706x(2004)40<14:ecopmt>2.0.co;2
[29]  Aslakson CJ, Miller FR. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res. 1992;52(6):1399–405. Epub 1992/03/15. pmid:1540948.
[30]  Guy CT, Cardiff R.D., and Muller W.J. Induction of mammary tumors by expression of polyomavirus middle T oncogene: A transgenic mouse model for metastatic disease. MCB. 1992;12:954–61. pmid:1312220 doi: 10.1128/mcb.12.3.954
[31]  Nakamura T, Yao R, Ogawa T, Suzuki T, Ito C, Tsunekawa N, et al. Oligo-astheno-teratozoospermia in mice lacking Cnot7, a regulator of retinoid X receptor beta. Nat Genet. 2004;36(5):528–33. Epub 2004/04/27. doi: 10.1038/ng1344 pmid:15107851.
[32]  Luzzi KJ, MacDonald IC, Schmidt EE, Kerkvliet N, Morris VL, Chambers AF, et al. Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol. 1998;153(3):865–73. pmid:9736035. doi: 10.3410/f.723825091.793506867
[33]  Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147(2):275–92. doi: 10.1016/j.cell.2011.09.024 pmid:22000009; PubMed Central PMCID: PMC3261217.
[34]  Petit AP, Wohlbold L, Bawankar P, Huntzinger E, Schmidt S, Izaurralde E, et al. The structural basis for the interaction between the CAF1 nuclease and the NOT1 scaffold of the human CCR4-NOT deadenylase complex. Nucleic Acids Res. 2012;40(21):11058–72. Epub 2012/09/15. doi: 10.1093/nar/gks883 pmid:22977175; PubMed Central PMCID: PMC3510486.
[35]  Horiuchi M, Takeuchi K, Noda N, Muroya N, Suzuki T, Nakamura T, et al. Structural basis for the antiproliferative activity of the Tob-hCaf1 complex. The Journal of biological chemistry. 2009;284(19):13244–55. Epub 2009/03/12. doi: 10.1074/jbc.M809250200 pmid:19276069; PubMed Central PMCID: PMC2676056.
[36]  Aslam A, Mittal S, Koch F, Andrau JC, Winkler GS. The Ccr4-NOT deadenylase subunits CNOT7 and CNOT8 have overlapping roles and modulate cell proliferation. Molecular biology of the cell. 2009;20(17):3840–50. Epub 2009/07/17. doi: 10.1091/mbc.E09-02-0146 pmid:19605561; PubMed Central PMCID: PMC2735483.
[37]  Funakoshi Y, Doi Y, Hosoda N, Uchida N, Osawa M, Shimada I, et al. Mechanism of mRNA deadenylation: evidence for a molecular interplay between translation termination factor eRF3 and mRNA deadenylases. Genes & development. 2007;21(23):3135–48. doi: 10.1101/gad.1597707 pmid:18056425; PubMed Central PMCID: PMC2081979.
[38]  Ogami K, Hosoda N, Funakoshi Y, Hoshino S. Antiproliferative protein Tob directly regulates c-myc proto-oncogene expression through cytoplasmic polyadenylation element-binding protein CPEB. Oncogene. 2014;33(1):55–64. doi: 10.1038/onc.2012.548 pmid:23178487.
[39]  Ringner M, Fredlund E, Hakkinen J, Borg A, Staaf J. GOBO: gene expression-based outcome for breast cancer online. PLoS One. 2011;6(3):e17911. Epub 2011/03/30. doi: 10.1371/journal.pone.0017911 pmid:21445301; PubMed Central PMCID: PMC3061871.
[40]  Helms MW, Kemming D, Contag CH, Pospisil H, Bartkowiak K, Wang A, et al. TOB1 is regulated by EGF-dependent HER2 and EGFR signaling, is highly phosphorylated, and indicates poor prognosis in node-negative breast cancer. Cancer Res. 2009;69(12):5049–56. doi: 10.1158/0008-5472.CAN-08-4154 pmid:19491269.
[41]  Charlesworth A, Cox LL, MacNicol AM. Cytoplasmic polyadenylation element (CPE)- and CPE-binding protein (CPEB)-independent mechanisms regulate early class maternal mRNA translational activation in Xenopus oocytes. The Journal of biological chemistry. 2004;279(17):17650–9. doi: 10.1074/jbc.M313837200 pmid:14752101; PubMed Central PMCID: PMC1817753.
[42]  Li X, Quon G, Lipshitz HD, Morris Q. Predicting in vivo binding sites of RNA-binding proteins using mRNA secondary structure. Rna. 2010;16(6):1096–107. doi: 10.1261/rna.2017210 pmid:20418358; PubMed Central PMCID: PMC2874161.
[43]  Wharton RP, Struhl G. RNA regulatory elements mediate control of Drosophila body pattern by the posterior morphogen nanos. Cell. 1991;67(5):955–67. pmid:1720354. doi: 10.1016/0092-8674(91)90368-9
[44]  Ryan K, Calvo O, Manley JL. Evidence that polyadenylation factor CPSF-73 is the mRNA 3' processing endonuclease. Rna. 2004;10(4):565–73. pmid:15037765; PubMed Central PMCID: PMC1370546. doi: 10.1261/rna.5214404
[45]  Zubiaga AM, Belasco JG, Greenberg ME. The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation. Molecular and cellular biology. 1995;15(4):2219–30. pmid:7891716; PubMed Central PMCID: PMC230450. doi: 10.1128/mcb.15.4.2219
[46]  Matsuda S, Kawamura-Tsuzuku J, Ohsugi M, Yoshida M, Emi M, Nakamura Y, et al. Tob, a novel protein that interacts with p185erbB2, is associated with anti-proliferative activity. Oncogene. 1996;12(4):705–13. pmid:8632892.
[47]  Maekawa M, Nishida E, Tanoue T. Identification of the Anti-proliferative protein Tob as a MAPK substrate. The Journal of biological chemistry. 2002;277(40):37783–7. doi: 10.1074/jbc.M204506200 pmid:12151396.
[48]  Boland A, Chen Y, Raisch T, Jonas S, Kuzuoglu-Ozturk D, Wohlbold L, et al. Structure and assembly of the NOT module of the human CCR4-NOT complex. Nature structural & molecular biology. 2013;20(11):1289–97. Epub 2013/10/15. doi: 10.1038/nsmb.2681 pmid:24121232.
[49]  Zheng X, Dumitru R, Lackford BL, Freudenberg JM, Singh AP, Archer TK, et al. Cnot1, Cnot2, and Cnot3 maintain mouse and human ESC identity and inhibit extraembryonic differentiation. Stem Cells. 2012;30(5):910–22. Epub 2012/03/01. doi: 10.1002/stem.1070 pmid:22367759; PubMed Central PMCID: PMC3787717.
[50]  Chen C, Ito K, Takahashi A, Wang G, Suzuki T, Nakazawa T, et al. Distinct expression patterns of the subunits of the CCR4-NOT deadenylase complex during neural development. Biochem Biophys Res Commun. 2011;411(2):360–4. Epub 2011/07/12. doi: 10.1016/j.bbrc.2011.06.148 pmid:21741365.
[51]  Lau NC, Kolkman A, van Schaik FM, Mulder KW, Pijnappel WW, Heck AJ, et al. Human Ccr4-Not complexes contain variable deadenylase subunits. Biochem J. 2009;422(3):443–53. Epub 2009/06/30. doi: 10.1042/BJ20090500 pmid:19558367.
[52]  Ito K, Takahashi A, Morita M, Suzuki T, Yamamoto T. The role of the CNOT1 subunit of the CCR4-NOT complex in mRNA deadenylation and cell viability. Protein & cell. 2011;2(9):755–63. Epub 2011/10/07. doi: 10.1007/s13238-011-1092-4 pmid:21976065.
[53]  Collart MA, Struhl K. CDC39, an essential nuclear protein that negatively regulates transcription and differentially affects the constitutive and inducible HIS3 promoters. EMBO J. 1993;12(1):177–86. pmid:8428577; PubMed Central PMCID: PMC413189.
[54]  Mittal S, Aslam A, Doidge R, Medica R, Winkler GS. The Ccr4a (CNOT6) and Ccr4b (CNOT6L) deadenylase subunits of the human Ccr4-Not complex contribute to the prevention of cell death and senescence. Molecular biology of the cell. 2011;22(6):748–58. Epub 2011/01/15. doi: 10.1091/mbc.E10-11-0898 pmid:21233283; PubMed Central PMCID: PMC3057700.
[55]  Sandler H, Kreth J, Timmers HT, Stoecklin G. Not1 mediates recruitment of the deadenylase Caf1 to mRNAs targeted for degradation by tristetraprolin. Nucleic Acids Res. 2011;39(10):4373–86. Epub 2011/02/01. doi: 10.1093/nar/gkr011 pmid:21278420; PubMed Central PMCID: PMC3105394.
[56]  Joly W, Chartier A, Rojas-Rios P, Busseau I, Simonelig M. The CCR4 Deadenylase Acts with Nanos and Pumilio in the Fine-Tuning of Mei-P26 Expression to Promote Germline Stem Cell Self-Renewal. Stem cell reports. 2013;1(5):411–24. Epub 2013/11/29. doi: 10.1016/j.stemcr.2013.09.007 pmid:24286029; PubMed Central PMCID: PMC3841267.
[57]  Winter SF, Lukes L, Walker RC, Welch DR, Hunter KW. Allelic variation and differential expression of the mSIN3A histone deacetylase complex gene Arid4b promote mammary tumor growth and metastasis. PLoS Genet. 2012;8(5):e1002735. Epub 2012/06/14. doi: 10.1371/journal.pgen.1002735 pmid:22693453; PubMed Central PMCID: PMC3364935.
[58]  Faraji F, Pang Y, Walker RC, Nieves Borges R, Yang L, Hunter KW. Cadm1 is a metastasis susceptibility gene that suppresses metastasis by modifying tumor interaction with the cell-mediated immunity. PLoS Genet. 2012;8(9):e1002926. Epub 2012/10/03. doi: 10.1371/journal.pgen.1002926 pmid:23028344; PubMed Central PMCID: PMC3447942.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133