The tripeptide glutathione is the most abundant cellular antioxidant with high medical relevance, and it is also required as a co-factor for various enzymes involved in the detoxification of reactive oxygen species and toxic compounds. However, its cell-type specific functions and its interaction with other cytoprotective molecules are largely unknown. Using a combination of mouse genetics, functional cell biology and pharmacology, we unraveled the function of glutathione in keratinocytes and its cross-talk with other antioxidant defense systems. Mice with keratinocyte-specific deficiency in glutamate cysteine ligase, which catalyzes the rate-limiting step in glutathione biosynthesis, showed a strong reduction in keratinocyte viability in vitro and in the skin in vivo. The cells died predominantly by apoptosis, but also showed features of ferroptosis and necroptosis. The increased cell death was associated with increased levels of reactive oxygen and nitrogen species, which caused DNA and mitochondrial damage. However, epidermal architecture, and even healing of excisional skin wounds were only mildly affected in the mutant mice. The cytoprotective transcription factor Nrf2 was strongly activated in glutathione-deficient keratinocytes, but additional loss of Nrf2 did not aggravate the phenotype, demonstrating that the cytoprotective effect of Nrf2 is glutathione dependent. However, we show that deficiency in glutathione biosynthesis is efficiently compensated in keratinocytes by the cysteine/cystine and thioredoxin systems. Therefore, our study highlights a remarkable antioxidant capacity of the epidermis that ensures skin integrity and efficient wound healing.
References
[1]
D'Autreaux B, Toledano MB. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol. 2007; 8(10):813–24. pmid:17848967 doi: 10.1038/nrm2256
[2]
Halliwell B. Biochemistry of oxidative stress. Biochem Soc Trans. 2007; 35(Pt 5):1147–50. pmid:17956298 doi: 10.1042/bst0351147
[3]
Sies H. Glutathione and its role in cellular functions. Free Rad Biol Med. 1999; 27(9–10):916–21. pmid:10569624 doi: 10.1016/s0891-5849(99)00177-x
[4]
Dalton TP, Chen Y, Schneider SN, Nebert DW, Shertzer HG. Genetically altered mice to evaluate glutathione homeostasis in health and disease. Free Rad Biol Med. 2004; 37(10):1511–26. pmid:15477003 doi: 10.1016/j.freeradbiomed.2004.06.040
[5]
Sipos K, Lange H, Fekete Z, Ullmann P, Lill R, Kispal G. Maturation of cytosolic iron-sulfur proteins requires glutathione. J Biol Chem. 2002; 277(30):26944–9. pmid:12011041 doi: 10.1074/jbc.m200677200
[6]
Ballatori N, Krance SM, Notenboom S, Shi S, Tieu K, Hammond CL. Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem. 2009; 390(3):191–214. doi: 10.1515/BC.2009.033. pmid:19166318
[7]
Traverso N, Ricciarelli R, Nitti M, Marengo B, Furfaro AL, Pronzato MA, et al. Role of glutathione in cancer progression and chemoresistance. Oxid Med Cell Longev. 2013; 2013:972913. doi: 10.1155/2013/972913. pmid:23766865
[8]
Deveci M, Gilmont RR, Dunham WR, Mudge BP, Smith DJ, Marcelo CL. Glutathione enhances fibroblast collagen contraction and protects keratinocytes from apoptosis in hyperglycaemic culture. Brit J Dermatol. 2005; 152(2):217–24. doi: 10.1111/j.1365-2133.2004.06329.x
[9]
Niggli HJ, Applegate LA. Glutathione response after UVA irradiation in mitotic and postmitotic human skin fibroblasts and keratinocytes. Photochem Photobiol. 1997 Apr;65(4):680–4. pmid:9114744 doi: 10.1111/j.1751-1097.1997.tb01911.x
[10]
Zhu M, Bowden GT. Molecular mechanism(s) for UV-B irradiation-induced glutathione depletion in cultured human keratinocytes. Photochem Photobiol. 2004; 80(2):191–6. pmid:15244506 doi: 10.1562/2004-02-26-ra-091.1
[11]
Hanada K, Gange RW, Connor MJ. Effect of glutathione depletion on sunburn cell formation in the hairless mouse. J Invest Dermatol. 1991; 96(6):838–40. pmid:2045672 doi: 10.1111/1523-1747.ep12474538
[12]
Gupta A, Singh RL, Raghubir R. Antioxidant status during cutaneous wound healing in immunocompromised rats. Mol Cell Biochem. 2002; 241(1–2):1–7. pmid:12482019 doi: 10.1023/b:mcbi.0000021339.34784.81
[13]
Mudge BP, Harris C, Gilmont RR, Adamson BS, Rees RS. Role of glutathione redox dysfunction in diabetic wounds. Wound Repair Regen. 2002; 10(1):52–8. pmid:11983006 doi: 10.1046/j.1524-475x.2002.10803.x
[14]
Moor AN, Tummel E, Prather JL, Jung M, Lopez JJ, Connors S, et al. Consequences of age on ischemic wound healing in rats: altered antioxidant activity and delayed wound closure. Age. 2014; 36(2):733–48. doi: 10.1007/s11357-014-9617-4. pmid:24443098
[15]
Adamson B, Schwarz D, Klugston P, Gilmont R, Perry L, Fisher J, et al. Delayed repair: the role of glutathione in a rat incisional wound model. J Surg Res. 1996; 62(2):159–64. pmid:8632633 doi: 10.1006/jsre.1996.0189
[16]
Yang Y, Dieter MZ, Chen Y, Shertzer HG, Nebert DW, Dalton TP. Initial characterization of the glutamate-cysteine ligase modifier subunit Gclm(-/-) knockout mouse. Novel model system for a severely compromised oxidative stress response. J Biol Chem. 2002; 277(51):49446–52. pmid:12384496 doi: 10.1074/jbc.m209372200
[17]
Dalton TP, Dieter MZ, Yang Y, Shertzer HG, Nebert DW. Knockout of the mouse glutamate cysteine ligase catalytic subunit (Gclc) gene: embryonic lethal when homozygous, and proposed model for moderate glutathione deficiency when heterozygous. Biochem Biophys Res Commun. 2000; 279(2):324–9. pmid:11118286 doi: 10.1006/bbrc.2000.3930
[18]
Shi ZZ, Osei-Frimpong J, Kala G, Kala SV, Barrios RJ, Habib GM, et al. Glutathione synthesis is essential for mouse development but not for cell growth in culture. Proc Natl Acad Sci U S A. 2000;97 (10):5101–6. pmid:10805773 doi: 10.1073/pnas.97.10.5101
[19]
Ramirez A, Page A, Gandarillas A, Zanet J, Pibre S, Vidal M, et al. A keratin K5Cre transgenic line appropriate for tissue-specific or generalized Cre-mediated recombination. Genesis. 2004; 39(1):52–7. pmid:15124227 doi: 10.1002/gene.20025
[20]
Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003; 83(3):835–70. pmid:12843410
[21]
Sykiotis GP, Bohmann D. Stress-activated cap'n'collar transcription factors in aging and human disease. Sci Signal. 2010;3(112):re3. doi: 10.1126/scisignal.3112re3. pmid:20215646
[22]
Lee HR, Cho JM, Shin DH, Yong CS, Choi HG, Wakabayashi N, et al. Adaptive response to GSH depletion and resistance to L-buthionine-(S,R)-sulfoximine: involvement of Nrf2 activation. Mol Cell Biochem. 2008; 318(1–2):23–31. doi: 10.1007/s11010-008-9853-y. pmid:18587629
[23]
Harris IS, Treloar AE, Inoue S, Sasaki M, Gorrini C, Lee KC, et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell. 2015; 27(2):211–22. doi: 10.1016/j.ccell.2014.11.019. pmid:25620030
[24]
Schafer M, Willrodt AH, Kurinna S, Link AS, Farwanah H, Geusau A, et al. Activation of Nrf2 in keratinocytes causes chloracne (MADISH)-like skin disease in mice. EMBO Mol Med. 2014; 6(4):442–57. doi: 10.1002/emmm.201303281. pmid:24503019
[25]
Schafer M, Farwanah H, Willrodt AH, Huebner AJ, Sandhoff K, Roop D, et al. Nrf2 links epidermal barrier function with antioxidant defense. EMBO Mol Med. 2012; 4(5):364–79. doi: 10.1002/emmm.201200219. pmid:22383093
[26]
Kulms D, Schwarz T. Molecular mechanisms of UV-induced apoptosis. Photodermatol Photoimmunol Photomed. 2000; 16(5):195–201. pmid:11068857 doi: 10.1034/j.1600-0781.2000.160501.x
[27]
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012; 149(5):1060–72. doi: 10.1016/j.cell.2012.03.042. pmid:22632970
[28]
Conrad M, Sato H. The oxidative stress-inducible cystine/glutamate antiporter, system x (c) (-): cystine supplier and beyond. Amino Acids. 2012; 42(1):231–46. doi: 10.1007/s00726-011-0867-5. pmid:21409388
[29]
Sasaki H, Sato H, Kuriyama-Matsumura K, Sato K, Maebara K, Wang H, et al. Electrophile response element-mediated induction of the cystine/glutamate exchange transporter gene expression. J Biol Chem. 2002; 277(47):44765–71. pmid:12235164 doi: 10.1074/jbc.m208704200
[30]
Conrad M, Jakupoglu C, Moreno SG, Lippl S, Banjac A, Schneider M, et al. Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function. Mol Cell Biol. 2004; 24(21):9414–23. pmid:15485910 doi: 10.1128/mcb.24.21.9414-9423.2004
[31]
Mandal PK, Seiler A, Perisic T, Kolle P, Banjac Canak A, Forster H, et al. System x(c)- and thioredoxin reductase 1 cooperatively rescue glutathione deficiency. J Biol Chem. 2010; 285(29):22244–53. doi: 10.1074/jbc.M110.121327. pmid:20463017
[32]
Pader I, Sengupta R, Cebula M, Xu J, Lundberg JO, Holmgren A, et al. Thioredoxin-related protein of 14 kDa is an efficient L-cystine reductase and S-denitrosylase. Proc Natl Acad Sci U S A. 2014; 111(19):6964–9. doi: 10.1073/pnas.1317320111. pmid:24778250
[33]
Eriksson S, Prigge JR, Talago EA, Arner ES, Schmidt EE. Dietary methionine can sustain cytosolic redox homeostasis in the mouse liver. Nat Commun. 2014;6:6479. doi: 10.1038/ncomms7479
[34]
Chen Y, Yang Y, Miller ML, Shen D, Shertzer HG, Stringer KF, et al. Hepatocyte-specific Gclc deletion leads to rapid onset of steatosis with mitochondrial injury and liver failure. Hepatology. 2007; 45(5):1118–28. pmid:17464988 doi: 10.1002/hep.21635
[35]
Yang J, Meyer M, Muller AK, Bohm F, Grose R, Dauwalder T, et al. Fibroblast growth factor receptors 1 and 2 in keratinocytes control the epidermal barrier and cutaneous homeostasis. J Cell Biol. 2010; 188(6):935–52. doi: 10.1083/jcb.200910126. pmid:20308431
[36]
Kumari S, Pasparakis M. Epithelial Cell Death and Inflammation in Skin. Curr Top Microbiol Immunol. 2015 Aug 15. Epub ahead of print. doi: 10.1007/82_2015_466
[37]
Kritas SK, Saggini A, Varvara G, Murmura G, Caraffa A, Antinolfi P, et al. Impact of mast cells on the skin. Int J Immunopathol Pharmacol. 2013; 26(4):855–9. pmid:24355220
[38]
Jameson J, Havran WL. Skin gammadelta T-cell functions in homeostasis and wound healing. Immunol Rev. 2007; 215:114–22. pmid:17291283 doi: 10.1111/j.1600-065x.2006.00483.x
[39]
Sengupta A, Lichti UF, Carlson BA, Cataisson C, Ryscavage AO, Mikulec C, et al. Targeted disruption of glutathione peroxidase 4 in mouse skin epithelial cells impairs postnatal hair follicle morphogenesis that is partially rescued through inhibition of COX-2. J Invest Dermatol. 2013; 133(7):1731–41. doi: 10.1038/jid.2013.52. pmid:23364477
[40]
Toppo S, Flohe L, Ursini F, Vanin S, Maiorino M. Catalytic mechanisms and specificities of glutathione peroxidases: variations of a basic scheme. Biochim Biophys Acta. 2009; 1790(11):1486–500. doi: 10.1016/j.bbagen.2009.04.007. pmid:19376195
[41]
Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014; 16(12):1180–91. doi: 10.1038/ncb3064. pmid:25402683
[42]
Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014; 156(1–2):317–31. doi: 10.1016/j.cell.2013.12.010. pmid:24439385
[43]
Chen Y, Johansson E, Fan Y, Shertzer HG, Vasiliou V, Nebert DW, et al. Early onset senescence occurs when fibroblasts lack the glutamate-cysteine ligase modifier subunit. Free Rad Biol Med. 2009; 47(4):410–8. doi: 10.1016/j.freeradbiomed.2009.05.003. pmid:19427898
[44]
Furfaro AL, Macay JR, Marengo B, Nitti M, Parodi A, Fenoglio D, et al. Resistance of neuroblastoma GI-ME-N cell line to glutathione depletion involves Nrf2 and heme oxygenase-1. Free Rad Biol Med. 2012; 52(2):488–96. doi: 10.1016/j.freeradbiomed.2011.11.007. pmid:22142473
[45]
Huebner AJ, Dai D, Morasso M, Schmidt EE, Schafer M, Werner S, et al. Amniotic fluid activates the nrf2/keap1 pathway to repair an epidermal barrier defect in utero. Dev Cell. 2012; 23(6):1238–46. doi: 10.1016/j.devcel.2012.11.002. pmid:23237955
[46]
Du Y, Zhang H, Lu J, Holmgren A. Glutathione and glutaredoxin act as a backup of human thioredoxin reductase 1 to reduce thioredoxin 1 preventing cell death by aurothioglucose. J Biol Chem. 2012; 287(45):38210–9. doi: 10.1074/jbc.M112.392225. pmid:22977247
[47]
Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 2013; 12(12):931–47. doi: 10.1038/nrd4002. pmid:24287781
[48]
Kong X, Thimmulappa R, Craciun F, Harvey C, Singh A, Kombairaju P, et al. Enhancing Nrf2 pathway by disruption of Keap1 in myeloid leukocytes protects against sepsis. Am J Respir Crit Care Med. 2011; 184(8):928–38. doi: 10.1164/rccm.201102-0271OC. pmid:21799073
[49]
Chrostek A, Wu X, Quondamatteo F, Hu R, Sanecka A, Niemann C, et al. Rac1 is crucial for hair follicle integrity but is not essential for maintenance of the epidermis. Mol Cell Biol. 2006; 26(18):6957–70. pmid:16943436 doi: 10.1128/mcb.00075-06
[50]
Sulcova J, Maddaluno L, Meyer M, Werner S. Accumulation and activation of epidermal gammadelta T cells in a mouse model of chronic dermatitis is not required for the inflammatory phenotype. Eur J Immunol. 2015; 45(9):2517–28. doi: 10.1002/eji.201545675. pmid:26081170
[51]
Rahman I, Kode A, Biswas SK. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc. 2006; 1(6):3159–65. pmid:17406579 doi: 10.1038/nprot.2006.378
[52]
Kalyanaraman B, Darley-Usmar V, Davies KJ, Dennery PA, Forman HJ, Grisham MB, et al. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Rad Biol Med. 2012; 52(1):1–6. doi: 10.1016/j.freeradbiomed.2011.09.030. pmid:22027063
[53]
Namin SM, Nofallah S, Joshi MS, Kavallieratos K, Tsoukias NM. Kinetic analysis of DAF-FM activation by NO: toward calibration of a NO-sensitive fluorescent dye. Nitric Oxide. 2013; 28:39–46. doi: 10.1016/j.niox.2012.10.001. pmid:23063986