全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2016 

Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development

DOI: 10.1371/journal.pgen.1005806

Full-Text   Cite this paper   Add to My Lib

Abstract:

Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship) theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict.

References

[1]  Redei GP. Crossing experiences with polyploids. Arab Inf Serv. 1964;1: 13.
[2]  Johnston S, den Nijs T, Peloquin S, Hanneman R Jr. The significance of genic balance to endosperm development in interspecific crosses. Theor Appl Genet. Springer; 1980;57: 5–9.
[3]  Lin BY. Ploidy barrier to endosperm development in maize. Genetics. 1984;107: 103–115.
[4]  McGrath J, Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell. 1984;37: 179–183. pmid:6722870 doi: 10.1016/0092-8674(84)90313-1
[5]  Surani M, Barton S, Norris M. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature. 1984;308: 548–550.
[6]  Scott RJ, Spielman M, Bailey J, Dickinson HG. Parent-of-origin effects on seed development in Arabidopsis thaliana. Development. 1998;125: 3329–41.
[7]  Grossniklaus U. Genomic imprinting in plants: a predominantly maternal affair. Annu Plant Rev Plant Epigenetics. 2005; 174–200. doi: 10.1002/9780470988626.ch6
[8]  Pires ND, Grossniklaus U. Different yet similar: evolution of imprinting in flowering plants and mammals. F1000Prime Rep. 2014;6: 12–15. doi: 10.12703/P6-63. pmid:25165562
[9]  Pignatta D, Gehring M. Imprinting meets genomics: new insights and new challenges. Curr Opin Plant Biol. 2012;15: 530–535. doi: 10.1016/j.pbi.2012.09.004. pmid:23000433
[10]  Raissig MT, Bemer M, Baroux C, Grossniklaus U. Genomic imprinting in the Arabidopsis embryo is partly regulated by PRC2. PLoS Genet. 2013;9: e1003862. doi: 10.1371/journal.pgen.1003862. pmid:24339783
[11]  Pignatta D, Erdmann RM, Scheer E, Picard CL, Bell GW, Gehring M. Natural epigenetic polymorphisms lead to intraspecific variation in Arabidopsis gene imprinting. Elife. 2014; e03198. doi: 10.7554/eLife.03198. pmid:24994762
[12]  Brandvain Y, Van Cleve J, Ubeda F, Wilkins JF. Demography, kinship, and the evolving theory of genomic imprinting. Trends Genet. 2011;27: 251–257. doi: 10.1016/j.tig.2011.04.005. pmid:21683468
[13]  Haig D, Westoby M. Parent specific gene expression and the triploid endosperm. Am Nat. 1989;134: 147–155.
[14]  Haig D. The kinship theory of imprinting. Annu Rev Ecol Syst. 2000;31: 9–32. doi: 10.1146/annurev.ecolsys.31.1.9
[15]  Haig D, Westoby M. An earlier formulation of the genetic conflict hypothesis of genomic imprinting. Nat Genet. 2006;38: 271–271. pmid:16501552 doi: 10.1038/ng0306-271
[16]  Barlow DP, Stoger R, Herrmann BG, Saito K, Schweifer N. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature. 1991;349: 84–87.
[17]  DeChiara TM, Robertson EJ, Efstratiadis A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell. 1991;64: 849–859. doi:http://dx.doi.org/10.1016/0092-8674(91)90513-X pmid:1997210
[18]  Haig D, Graham C. Genomic imprinting and the strange case of the insulin-like growth factor II receptor. Cell. 1991;64: 1045–1046. pmid:1848481 doi: 10.1016/0092-8674(91)90256-x
[19]  Vielle-Calzada J-P, Thomas J, Spillane C, Coluccio A, Hoeppner MA, Grossniklaus U. Maintenance of genomic imprinting at the Arabidopsis medea locus requires zygotic DDM1 activity. Gene Dev. 1999;13: 2971–2982.
[20]  W?hrmann HJP, Gagliardini V, Raissig MT, Wehrle W, Arand J, Schmidt A, et al. Identification of a DNA methylation-independent imprinting control region at the Arabidopsis MEDEA locus. Genes Dev. 2012;26: 1837–50. doi: 10.1101/gad.195123.112. pmid:22855791
[21]  Grossniklaus U, Vielle-Calzada J-P, Hoeppner MA, Gagliano WB. Maternal control of embryogenesis by MEDEA, a Polycomb group gene in Arabidopsis. Science. 1998;280: 446–450. pmid:9545225 doi: 10.1126/science.280.5362.446
[22]  Bemer M, Grossniklaus U. Dynamic regulation of Polycomb group activity during plant development. Curr Opin Plant Biol. 2012;15: 523–9. doi: 10.1016/j.pbi.2012.09.006. pmid:22999383
[23]  Pittman KE, Levin DA. Effects of parental identities and environment on components of crossing success in Phlox drummondii. Am J Bot. 1989;76: 409–418. doi: 10.2307/2444611
[24]  Fenster CB. Effect of male pollen donor and female seed parent on allocation of resources to developing seeds and fruit in Chamaecrista fasciculata (Leguminosae). Am J Bot. 1991;78: 13–23. doi: 10.2307/2445224
[25]  Schmid B, Dolt C. Effects of maternal and paternal environment and genotype on offspring phenotype in Solidago altissima L. Evolution. 1994;48: 1525. doi: 10.2307/2410246
[26]  Byers DL, Platenkamp GAJ, Shaw RG. Variation in seed characters in Nemophila menziesii: evidence of a genetic basis for maternal effect. Evolution. 1997;51: 1445–1456. doi: 10.2307/2411197
[27]  Ba?uelos MJ, Obeso JR. Maternal provisioning, sibling rivalry and seed mass variability in the dioecious shrub Rhamnus alpinus. Evol Ecol. 2003;17: 19–31.
[28]  Diggle PK, Abrahamson NJ, Baker RL, Barnes MG, Koontz TL, Lay CR, et al. Dynamics of maternal and paternal effects on embryo and seed development in wild radish (Raphanus sativus). Ann Bot. 2010;106: 309–319.
[29]  House C, Roth C, Hunt J, Kover PX. Paternal effects in Arabidopsis indicate that offspring can influence their own size. Proc R Soc London B. 2010;277: 2885–93. doi: 10.1098/rspb.2010.0572
[30]  de Jong TJ, Hermans CM, van der Veen-van Wijk KC a M. Paternal effects on seed mass in Arabidopsis thaliana. Plant Biol. 2011;13: 71–77. doi: 10.1111/j.1438-8677.2009.00287.x. pmid:21134089
[31]  Gehring M, Huh JH, Hsieh TF, Penterman J, Choi Y, Harada JJ, et al. DEMETER DNA glycosylase establishes MEDEA Polycomb gene self-imprinting by allele-specific demethylation. Cell. 2006;124: 495–506.
[32]  Baroux C, Gagliardini V, Page DR, Grossniklaus U. Dynamic regulatory interactions of Polycomb group genes: MEDEA autoregulation is required for imprinted gene expression in Arabidopsis. Gene Dev. 2006;20: 1081–6. pmid:16651654 doi: 10.1101/gad.378106
[33]  Jullien PE, Katz A, Oliva M, Ohad N, Berger F. Polycomb group complexes self-regulate imprinting of the Polycomb group gene MEDEA in Arabidopsis. Curr Biol. 2006;16: 486–92. pmid:16527743 doi: 10.1016/j.cub.2006.01.020
[34]  Yadegari R, Kinoshita T, Lotan O, Cohen G, Katz A, Choi Y, et al. Mutations in the FIE and MEA genes that encode interacting Polycomb proteins cause parent-of-origin effects on seed development by distinct mechanisms. Plant Cell. 2000;12: 2367–2382.
[35]  Atwell S, Huang YS, Vilhjálmsson BJ, Willems G, Horton M, Li Y, et al. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature. 2010;465: 627–631. doi: 10.1038/nature08800. pmid:20336072
[36]  Herridge RP, Day RC, Baldwin S, Macknight RC. Rapid analysis of seed size in Arabidopsis for mutant and QTL discovery. Plant Methods. 2011;7: 1–11. doi: 10.1186/1746-4811-7-3
[37]  Korte A, Farlow A. The advantages and limitations of trait analysis with GWAS: a review. Plant Methods. 2013;9: 29. doi: 10.1186/1746-4811-9-29. pmid:23876160
[38]  Alonso-Blanco C, Peeters AJM, Koornneef M, Lister C, Dean C, van den Bosch N, et al. Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population. Plant J. 1998;14: 259–71.
[39]  Broman KW, Wu H, Sen ?, Churchill GA. R/qtl: QTL mapping in experimental crosses. Bioinformatics. 2003;19: 889–890.
[40]  Keurentjes JJB, Bentsink L, Alonso-Blanco C, Hanhart CJ, Blankestijn-De Vries H, Effgen S, et al. Development of a near-isogenic line population of Arabidopsis thaliana and comparison of mapping power with a recombinant inbred line population. Genetics. 2007;175: 891–905. pmid:17179089 doi: 10.1534/genetics.106.066423
[41]  Schneeberger K, Ossowski S, Ott F, Klein JD, Wang X, Lanz C, et al. Reference-guided assembly of four diverse Arabidopsis thaliana genomes. Proc Natl Acad Sci USA. 2011;108: 10249–10254. doi: 10.1073/pnas.1107739108. pmid:21646520
[42]  Weigel D, Mott R. The 1001 Genomes Project for Arabidopsis thaliana. Genome Biol. 2009;10: 107.
[43]  Gibson G, Dworkin I. Uncovering cryptic genetic variation. Nat Rev Genet. 2004;5: 681–690. pmid:15372091 doi: 10.1038/nrg1426
[44]  Paaby AB, Rockman M V. Cryptic genetic variation: evolution’s hidden substrate. Nat Rev Genet. 2014;15: 247–58. doi: 10.1038/nrg3688. pmid:24614309
[45]  Waddington CH. The Strategy of the Genes. George Allen & Unwin; 1957.
[46]  Rendel JM. Canalization of the scute phenotype of Drosophila. Evolution. JSTOR; 1959;13: 425–439. doi: 10.2307/2406126
[47]  Lauter N, Doebley J. Genetic variation for phenotypically invariant traits detected in teosinte: implications for the evolution of novel forms. Genetics. 2002;342: 333–342.
[48]  McGuigan K, Nishimura N, Currey M, Hurwit D, Cresko WA. Cryptic genetic variation and body size evolution in threespine stickleback. Evolution. 2011;65: 1203–1211. doi: 10.1111/j.1558-5646.2010.01195.x. pmid:21463296
[49]  Rutherford SL, Lindquist S. Hsp90 as a capacitor for morphological evolution. Nature. 1998;396: 336–342.
[50]  Queitsch C, Sangster TA, Lindquist S. Hsp90 as a capacitor of phenotypic variation. Nature. 2002;417: 618–624.
[51]  Le Rouzic A, Carlborg ?. Evolutionary potential of hidden genetic variation. Trends Ecol Evol. 2008;23: 33–37. doi:http://dx.doi.org/10.1016/j.tree.2007.09.014 pmid:18079017
[52]  McGuigan K, Sgrò CM. Evolutionary consequences of cryptic genetic variation. Trends Ecol Evol. 2009;24: 305–311 doi: 10.1016/j.tree.2009.02.001. pmid:19328588
[53]  de Jong TJ, Scott RJ. Parental conflict does not necessarily lead to the evolution of imprinting. Trends Plant Sci. 2007;12: 439–443. pmid:17855155 doi: 10.1016/j.tplants.2007.07.003
[54]  K?hler C, Grossniklaus U. Seed development and genomic imprinting in plants. Prog Mol Subcell Biol. United States; 2005;38: 237–262. pmid:15881898 doi: 10.1007/3-540-27310-7_10
[55]  Brandvain Y, Haig D. Divergent mating systems and parental conflict as a barrier to hybridization in flowering plants. Am Nat. 2005;166: 330–8. pmid:16224688 doi: 10.1086/432036
[56]  Tang C, Toomajian C, Sherman-Broyles S, Plagnol V, Guo Y-L, Hu TT, et al. The evolution of selfing in Arabidopsis thaliana. Science. 2007;317: 1070–2. pmid:17656687 doi: 10.1126/science.1143153
[57]  K?hler C, Hennig L, Spillane C, Pien S, Gruissem W, Grossniklaus U. The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. Gene Dev. 2003;17: 1540. pmid:12815071 doi: 10.1101/gad.257403
[58]  Fatihi A, Zbierzak AM, D?rmann P. Alterations in seed development gene expression affect size and oil content of Arabidopsis seeds. Plant Physiol. Am Soc Plant Biol; 2013;163: 973–985. doi: 10.1104/pp.113.226761. pmid:24014578
[59]  Josefsson C, Dilkes BP, Comai L. Parent-dependent loss of gene silencing during interspecies hybridization. Curr Biol. 2006;16: 1322–8. pmid:16824920 doi: 10.1016/j.cub.2006.05.045
[60]  Luo M, Bilodeau P, Dennis ES, Peacock WJ, Chaudhury A. Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds. Proc Natl Acad Sci USA. 2000;97: 10637–10642.
[61]  Makarevich G, Villar CBR, Erilova A, K?hler C. Mechanism of PHERES1 imprinting in Arabidopsis. J Cell Sci. 2008;121: 906–12. doi: 10.1242/jcs.023077. pmid:18303047
[62]  Schmitz RJ, Schultz MD, Urich M a, Nery JR, Pelizzola M, Libiger O, et al. Patterns of population epigenomic diversity. Nature. 2013;495: 193–8. doi: 10.1038/nature11968. pmid:23467092
[63]  Erilova A, Brownfield L, Exner V, Rosa M, Twell D, Mittelsten Scheid O, et al. Imprinting of the Polycomb group gene MEDEA serves as a ploidy sensor in Arabidopsis. PLoS Genet. 2009;5: e1000663. doi: 10.1371/journal.pgen.1000663. pmid:19779546
[64]  Kradolfer D, Hennig L, K?hler C. Increased maternal genome dosage bypasses the requirement of the FIS Polycomb repressive complex 2 in Arabidopsis seed development. PLoS Genet. 2013;9: e1003163. doi: 10.1371/journal.pgen.1003163. pmid:23326241
[65]  Schatlowski N, Wolff P, Santos-Gonzalez J, Schoft V, Siretskiy A, Scott R, et al. Hypomethylated pollen bypasses the interploidy hybridization barrier in Arabidopsis. Plant Cell. 2014;26: 3556–3568. doi: 10.1105/tpc.114.130120. pmid:25217506
[66]  Wolff P, Weinhofer I, Seguin J, Roszak P, Beisel C, Donoghue MTA, et al. High-resolution analysis of parent-of-origin allelic expression in the Arabidopsis endosperm. PLoS Genet. 2011;7: e1002126. doi: 10.1371/journal.pgen.1002126. pmid:21698132
[67]  Waters AJ, Bilinski P, Eichten SR, Vaughn MW, Ross-Ibarra J, Gehring M, et al. Comprehensive analysis of imprinted genes in maize reveals allelic variation for imprinting and limited conservation with other species. Proc Natl Acad Sci USA. 2013;110: 19639–19644. doi: 10.1073/pnas.1309182110. pmid:24218619
[68]  Miyake T, Takebayashi N, Wolf DE. Possible diversifying selection in the imprinted gene, MEDEA, in Arabidopsis. Mol Biol Evol. 2009;26: 843–857. doi: 10.1093/molbev/msp001. pmid:19126870
[69]  Spillane C, Schmid KJ, Laoueillé-Duprat S, Pien S, Escobar-Restrepo J-M, Baroux C, et al. Positive darwinian selection at the imprinted MEDEA locus in plants. Nature. 2007;448: 349–352. pmid:17637669 doi: 10.1038/nature05984
[70]  Kawabe A, Fujimoto R, Charlesworth D. High diversity due to balancing selection in the promoter region of the MEDEA gene in Arabidopsis lyrata. Curr Biol. 2007;17: 1885–1889. pmid:17949979 doi: 10.1016/j.cub.2007.09.051
[71]  Johal GS, Balint-Kurti P, Weil CF. Mining and harnessing natural variation: a little MAGIC. Crop Sci. 2008;48: 2066–2073. doi: 10.2135/cropsci2008.03.0150
[72]  Spillane C, MacDougall C, Stock C, K?hler C, Vielle-Calzada J-P, Nunes SM, et al. Interaction of the Arabidopsis Polycomb group proteins FIE and MEA mediates their common phenotypes. Curr Biol. 2000;10: 1535–8.
[73]  Gutierrez-Marcos JF, Pennington PD, Costa LM, Dickinson HG. Imprinting in the endosperm: a possible role in preventing wide hybridization. Philos Trans R Soc B. 2003;358: 1105–1111. doi: 10.1098/rstb.2003.1292
[74]  Ishikawa R, Kinoshita T. Epigenetic programming: the challenge to species hybridization. Mol Plant. 2009;2: 589–599. doi: 10.1093/mp/ssp028. pmid:19825641
[75]  K?hler C, Kradolfer D. Epigenetic mechanisms in the endosperm and their consequences for the evolution of flowering plants. Biochim Biophys Acta. 2011;1809: 438–443. doi: 10.1016/j.bbagrm.2011.04.004. pmid:21549229
[76]  Luo M, Bilodeau P, Koltunow A, Dennis ES, Peacock WJ, Chaudhury AM. Genes controlling fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci USA. 1999;96: 296–301.
[77]  Bouyer D, Roudier F, Heese M, Andersen ED, Gey D, Nowack MK, et al. Polycomb Repressive Complex 2 controls the embryo-to-seedling phase transition. PLoS Genet. 2011;7: e1002014. doi: 10.1371/journal.pgen.1002014. pmid:21423668
[78]  Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science. 2003;301: 653–657. pmid:12893945 doi: 10.1126/science.1086391
[79]  Danisman S, Van der Wal F, Dhondt S, Waites R, de Folter S, Bimbo A, et al. Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically. Plant Physiol. 2012;159: 1511–1523. doi: 10.1104/pp.112.200303. pmid:22718775
[80]  Clough SJ, Bent AF, SJ C , AF B . Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16: 735–743. pmid:10069079 doi: 10.1046/j.1365-313x.1998.00343.x
[81]  Bentsink L, Hanson J, Hanhart CJ, Blankestijn-de Vries H, Coltrane C, Keizer P, et al. Natural variation for seed dormancy in Arabidopsis is regulated by additive genetic and molecular pathways. Proc Natl Acad Sci. 2010;107: 4264–4269. doi: 10.1073/pnas.1000410107. pmid:20145108
[82]  Bates D, Maechler M, Bolker BM, Walker S. {lme4}: Linear mixed-effects models using Eigen and S4. ArXiv e-print. 2014; .
[83]  Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9: 357–359. doi: 10.1038/nmeth.1923. pmid:22388286
[84]  Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25: 2078–2079.
[85]  Schmidt A, W?hrmann HJP, Raissig MT, Arand J, Gheyselinck J, Gagliardini V, et al. The Polycomb group protein MEDEA and the DNA methyltransferase MET1 interact to repress autonomous endosperm development in Arabidopsis. Plant J. 2013;73: 776–87. doi: 10.1111/tpj.12070. pmid:23146178
[86]  Zhang Z, Ersoz E, Lai C-Q, Todhunter RJ, Tiwari HK, Gore M a, et al. Mixed linear model approach adapted for genome-wide association studies. Nat Genet. 2010;42: 355–60. doi: 10.1038/ng.546. pmid:20208535
[87]  Lipka AE, Tian F, Wang Q, Peiffer JA, Li M, Bradbury PJ, et al. GAPIT: genome association and prediction integrated tool. Bioinformatics. 2012;28: 2397–2399. pmid:22796960 doi: 10.1093/bioinformatics/bts444
[88]  Seren ü, Vilhjálmsson BJ, Horton MW, Meng D, Forai P, Huang YS, et al. GWAPP: A web application for genome-wide association mapping in Arabidopsis. Plant Cell. 2012;24: 4793–805. doi: 10.1105/tpc.112.108068. pmid:23277364
[89]  Wickham H. ggplot2: elegant graphics for data analysis. Springer New York; 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133