全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Assessment of the Susceptibility of Boar Semen to Oxidative Stress

DOI: 10.4236/ojas.2016.62015, PP. 123-130

Keywords: Oxidative Stress, Motility, Apoptosis, Viability, Semen

Full-Text   Cite this paper   Add to My Lib

Abstract:

The present study was conducted to assess boar sperm susceptibility to oxidative stress generated by hydrogen peroxide (H2O2). Semen was collected in replicates from three experimental large white boars using the gloved-hand technique. Semen ejaculates from three boars were treated with different concentrations of H2O2 for three hours. SYBR-14 and Propidium Iodide (PI) Live/ Dead assay kit was used to determine cell viability, and Yo-pro-1 and PI apoptosis kit was used to determine cell death, namely, apoptosis. Boar sperm motility obtained using computer aided sperm analysis (CASA) was between 90% and 100% with more than 98% viability with 0% apoptotic cells. In H2O2 treated boar sperm cells, rapid (RAP) and progressive motility (PM) increased. Also, H2O2 treatment induced a high positive correlation with apoptosis but high negative correlation with viability. Hydrogen peroxide decreased boar semen total motility (TM) by 10%. In addition, most of the boar sperm cells became apoptotic and lost 55% of viability under oxidative stress induced by H2O2. This study illustrated that boar semen was more susceptible to oxidative stress induced by H2O2.

References

[1]  Barth, A.D. and Waldner, C.L. (2000) Factors Affecting Breeding Soundness Classification of Beef Bulls Examined at the Western College of Veterinary Medicine. The Canadian Veterinary Journal, 43, 274-284.
[2]  Bucak, M.N., Tuncer, P.B., Sariozkan, S. and Ulutas, P.A. (2009) Comparison of the Effects of Glutamine and an Amino Acid Solution on Post-Thawed Ram Sperm Parameters, Lipid Peroxidation and Anti-Oxidant Activities. Small Ruminant Research, 81, 13-17.
http://dx.doi.org/10.1016/j.smallrumres.2008.10.003
[3]  Thomson, L.K., Fleming, S.D., Aitken, R.J., De Luliis, G.N., Zieschang, J.A. and Clark, A.M. (2009) Cryopreservation-Induced Human Sperm DNA Damage Is Predominantly Mediated by Oxidative Stress Rather than Apoptosis. Human Reproduction, 24, 2061-2070.
http://dx.doi.org/10.1093/humrep/dep214
[4]  Alvarez, J.G., Touchstone, J.C., Blasco, L. and Storey, B.T. (1987) Spontaneous Lipid Peroxidation and Production of Hydrogen Peroxide and Superoxide in Human Spermatozoa. Superoxide Dismutase as Major Enzyme Protectant against Oxygen Toxicity. Journal of Andrology, 8, 338-348.
http://dx.doi.org/10.1002/j.1939-4640.1987.tb00973.x
[5]  Guèrin, P., Mouatassim, S. and Mènèzo, Y. (2001) Oxidative Stress and Protection against Reactive Oxygen Species in the Pre-Implantation Embryo and Its Surroundings. Human Reproduction Update, 7, 175-189.
http://dx.doi.org/10.1093/humupd/7.2.175
[6]  De Lamirande, E. and Gagnon, C. (1995) Impact of Reactive Oxygen Species on Spermatozoa: A Balancing Act between Beneficial and Detrimental Effects. Human Reproduction, 10, 15-21.
http://dx.doi.org/10.1093/humrep/10.suppl_1.15
[7]  Agarwal, A., Gupta, S. and Sharma, R.K. (2005) Role of Oxidative Stress in Female Reproduction. Reproductive Biology & Endocrinology, 3, 28.
http://dx.doi.org/10.1186/1477-7827-3-28
[8]  Goncalves, F., Barretto, L.S.S., Arruda, R.P., Perri, S.H.V. and Mingoti, G.H. (2001) Effect of Antioxidants during Bovine in Vitro Fertilization Procedures on Spermatozoa and Embryo Development. Reproduction in Domestic Animals, 45, 129-135.
http://dx.doi.org/10.1111/j.1439-0531.2008.01272.x
[9]  Desai, N., Sharma, R., Maker, K., Sabnegh, E. and Agarwal, A. (2009) Physiological and Pathological Levels of Reactive Oxygen Species in Neat Semen of Infertile Men. Fertility & Sterility, 92, 1626-1631.
http://dx.doi.org/10.1016/j.fertnstert.2008.08.109
[10]  Lindemann, C.B., O’Brien, J.A. and Giblin, F.J. (1998) An Investigation of the Effectiveness of Certain Antioxidants in Preserving the Motility of Reactivated Bull Sperm Models. Biology of Reproduction, 38, 114-120.
http://dx.doi.org/10.1095/biolreprod38.1.114
[11]  De Lamirande, E. and O’Flaherty, C. (2007) Sperm Activation: Role of Reactive Oxygen Species and Kinases. Biochimiaet Biophysica Acta, 1784, 106-115.
http://dx.doi.org/10.1016/j.bbapap.2007.08.024
[12]  Levy, R. and Seifer-Aknin, I. (2001) Apoptosis during Spermatogenesis and in Ejaculated Spermatozoa: Importance for Fertilization. Annales de Biology Clinique, 59, 531-545.
[13]  Lysiak, J.J., Zheng, S., Woodson, R. and Turner, T.T. (2007) Caspase-9-Dependent Pathway to Murine Germ Cell Apoptosis: Mediation by Oxidative Stress, BAX, and Caspase 2. Cell Tissue Research, 328, 411-419.
http://dx.doi.org/10.1007/s00441-006-0341-y
[14]  Stevanato, J., Bertolla, R.P., Barradas, V., Spaine, D.M., Cedenho, A.P. and Ortiz, V. (2008) Semen Processing by Density Gradient Centrifugation Does Not Improve Sperm Apoptotic Deoxyribonucleic Acid Fragmentation Rates. Fertility & Sterility, 90, 889-890.
http://dx.doi.org/10.1016/j.fertnstert.2007.01.059
[15]  Zini, A., De Lamirande, E. and Gagnon, C. (1995) Low Levels of Nitric Oxide Promote Human Sperm Capacitation in Vitro. Journal of Andrology, 16, 424-431.
[16]  Pilane, C.M. and La Belle, E.F. (2004) No Induced Apoptosis of Vascular Smooth Muscle Cells Accompanied by Ceramide Increase. Journal of Cellular Physiology, 199, 310-315.
http://dx.doi.org/10.1002/jcp.10464
[17]  Krishan, A. (1987) Effect of Drug Efflux Blockers on Vital Staining of Cellular DNA with Hoechst 33342. Cytometry, 8, 642-645.
http://dx.doi.org/10.1002/cyto.990080618
[18]  Garner, D.L. and Johnson, L.J. (1995) Viability Assessment of Mammalian Sperm Using SYBR-14 and Propidium Iodide. Biology Reproduction, 53, 276-284.
http://dx.doi.org/10.1095/biolreprod53.2.276
[19]  Holt, W.V., O’Brien, J. and Abaigar, T. (2007) Applications and Interpretation of Computer-Assisted Sperm Analyses and Sperm Sorting Methods in Assisted Breeding and Comparative Research. Reproduction Fertility & Development, 19, 709-718.
http://dx.doi.org/10.1071/RD07037
[20]  Working, P.K. and Hurtt, M.E. (1987) Computerised Video Micrographic Analysis of Rat Sperm Motility. Journal of Andrology, 8, 330-337.
http://dx.doi.org/10.1002/j.1939-4640.1987.tb00971.x
[21]  Toth, G.P., Stober, J.A., Reads, E.J., Christ, S.A. and Smith, M.K. (1991) Correlation of Sperm Motion Parameters with Fertility in Rats Treated Subchronically with Epichlorohydrin. Journal of Andrology, 12, 54-61.
[22]  Griveau, J.F., Renard, P. and Le Lannou, D. (1994) An in Vitro Promoting Role for Hydrogen Peroxide in Human Sperm Capacitation. International Journal of Andrology, 17, 300-307.
http://dx.doi.org/10.1111/j.1365-2605.1994.tb01260.x
[23]  De Lamirande, E., Jiang, H., Zini, A., Kodama, H. and Gagnon, C. (1997) Reactive Oxygen Species and Sperm Physiology. Reviews of Reproduction, 2, 48-54.
http://dx.doi.org/10.1530/ror.0.0020048
[24]  Aitken, R.J., Paterson, M., Fisher, H., Buckingham, D.W. and Van Duin, M. (1995) Redox Regulation of Tyrosine Phosphorylation in Human Spermatozoa and Its Role in the Control of Human Sperm Function. Journal of Cell Science, 180, 2017-2025.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133