全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Mixture-Based Bayesian Model Averaging Method

DOI: 10.4236/ojs.2016.62019, PP. 220-228

Keywords: Mixture, Bayesian Model Selection, Bayesian Model Averaging, Bayesian Theory, Frequentist Performance

Full-Text   Cite this paper   Add to My Lib

Abstract:

Bayesian model averaging (BMA) is a popular and powerful statistical method of taking account of uncertainty about model form or assumption. Usually the long run (frequentist) performances of the resulted estimator are hard to derive. This paper proposes a mixture of priors and sampling distributions as a basic of a Bayes estimator. The frequentist properties of the new Bayes estimator are automatically derived from Bayesian decision theory. It is shown that if all competing models have the same parametric form, the new Bayes estimator reduces to BMA estimator. The method is applied to the daily exchange rate Euro to US Dollar.

References

[1]  Leeb, H. and Potscher, B.M. (2009) Model Selection. In: Handbook of Financial Time Series, Springer, Berlin Heidelberg, 889-925.
http://dx.doi.org/10.1007/978-3-540-71297-8_39
[2]  Zucchini, W. (2000) An Introduction to Model Selection. Journal of Mathematical Psychology, 44, 41-61.
http://dx.doi.org/10.1006/jmps.1999.1276
[3]  Zucchini, W., Claeskens, G. and Nguefack-Tsague, G. (2011) Model Selection. In: International Encyclopedia of Statistical Science, Springer, Berlin Heidelberg, 830-833.
http://dx.doi.org/10.1007/978-3-642-04898-2_373
[4]  Nguefack-Tsague, G. (2013) An Alternative Derivation of Some Commons Distributions Functions: A Post-Model Selection Approach. International Journal of Applied Mathematics and Statistics, 42, 138-147.
[5]  Burnham, K.P. and Anderson, D.R. (2013) Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer, Cambridge.
[6]  Nguefack-Tsague, G. and Walter, Z. (2011) Post-Model Selection Inference and Model Averaging. Pakistan Journal of Statistics and Operation Research, 7, 347-361.
http://dx.doi.org/10.18187/pjsor.v7i2-Sp.292
[7]  Nguefack-Tsague, G. (2013) On Bootstrap and Post-Model Selection Inference. International Journal of Mathematics and Computation, 21, 51-64.
[8]  Nguefack-Tsague, G. (2014) Estimation of a Multivariate Mean under Model Selection Uncertainty. Pakistan Journal of Statistics and Operation Research, 10, 131-145.
http://dx.doi.org/10.18187/pjsor.v10i1.449
[9]  Nguefack-Tsague, G. (2014) On Optimal Weighting Scheme in Model Averaging. American Journal of Applied Mathematics and Statistics, 2, 150-156.
http://dx.doi.org/10.12691/ajams-2-3-9
[10]  Schwarz, G. (1978) Estimating the Dimension of a Model. Annals of Statistics, 6, 461-465.
http://dx.doi.org/10.1214/aos/1176344136
[11]  Nguefack-Tsague, G. and Ingo, B. (2014) A Focused Bayesian Information Criterion. Advances in Statistics, 2014, Article ID: 504325.
http://dx.doi.org/10.1155/2014/504325
[12]  Guan, Y. and Stephens, M. (2011) Bayesian Variable Selection Regression for Genome-Wide Association Studies, and Other Large-Scale Problems. Annals of Applied Statistics, Series B, 3, 1780-1815.
http://dx.doi.org/10.1214/11-AOAS455
[13]  Nguefack-Tsague, G. (2011) Using Bayesian Networks to Model Hierarchical Relationships in Epidemiological Studies. Epidemiology and Health, 33, e201100633.
http://dx.doi.org/10.4178/epih/e2011006
[14]  Carvalho, C.M. and Scott, J.G. (2009) Objective Bayesian Model Selection in Gaussian Graphical Models. Biometrika, 96, 497-515.
http://dx.doi.org/10.1093/biomet/asp017
[15]  Fridley, B.L. (2009) Bayesian Variable and Model Selection Methods for Genetic Association Studies. Genetic Epidemiology, Series B, 33, 27-37.
http://dx.doi.org/10.1002/gepi.20353
[16]  Robert, C. (2007) The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation. Springer, New York.
[17]  Liang, F., Paulo, R., Molina, G., Clyde, M.A. and Berger, J.O. (2008) Mixtures of g Priors for Bayesian Variable Selection. Journal of the American Statistical Association, 103, 174-200.
http://dx.doi.org/10.1198/016214507000001337
[18]  Bernado, J.M. and Smith, A.F.M. (1994) Bayesian Theory. Wiley, New York.
http://dx.doi.org/10.1002/9780470316870
[19]  Hoeting, J.A., Madigan, D., Raftery, A.E. and Volinsky, C.T. (1999) Bayesian Model Averaging: A Tutorial (with Discussions). Statistical Science, 14, 382-417.
[20]  Clyde, M.A. (1999) Bayesian Model Averaging and Model Search Strategies. In: Bernardo, J.M., Dawid, A.P., Berger, J.O. and Smith, A.F.M., Eds., Bayesian Statistics 6, Oxford University Press, Oxford, 157-188.
[21]  Clyde, M.A. and George, E.I. (2004) Model Uncertainty. Statistical Science, 19, 81-94.
http://dx.doi.org/10.1214/088342304000000035
[22]  Marty, R., Fortin, V., Kuswanto, H., Favre, A.-C. and Parent, E. (2015) Combining the Bayesian Processor of Output with Bayesian Model Averaging for Reliable Ensemble Forecasting. Journal of the Royal Statistical Society: Series C (Applied Statistics), 64, 75-92.
http://dx.doi.org/10.1111/rssc.12062
[23]  Simmons, S.J., Chen, C., Li, X., Wang, Y., Piegorsch, W.W., Fang, Q., Hu, B. and Dunn, G.E. (2015) Bayesian Model Averaging for Benchmark Dose Estimation. Environmental and Ecological Statistics, 22, 5-16.
http://dx.doi.org/10.1007/s10651-014-0285-4
[24]  Fan, T.-H. and Wang, G.-T. (2015) Bayesian Model Averaging in Longitudinal Regression Models with AR (1) Errors with Application to a Myopia Data Set. Journal of Statistical Computation and Simulation, 85, 1667-1678.
http://dx.doi.org/10.1080/00949655.2014.891205
[25]  Corani, G. and Mignatti, A. (2015) Robust Bayesian Model Averaging for the Analysis of Presence-Absence Data. Environmental and Ecological Statistics, 22, 513-534.
http://dx.doi.org/10.1007/s10651-014-0308-1
[26]  Tsiotas G. (2015) A Quasi-Bayesian Model Averaging Approach for Conditional Quantile Models. Journal of Statistical Computation and Simulation, 85, 1963-1986.
http://dx.doi.org/10.1080/00949655.2014.913044
[27]  Baran S. (2014) Probabilistic Wind Speed Forecasting Using Bayesian Model Averaging with Truncated Normal Components. Computational Statistics and Data Analysis, 75, 227-238.
http://dx.doi.org/10.1016/j.csda.2014.02.013
[28]  Lenkoski, A., Eicher, T.S. and Raftery, A.E. (2014) Two-Stage Bayesian Model Averaging in Endogenous Variable Models. Econometric Reviews, 33, 122-151.
http://dx.doi.org/10.1080/07474938.2013.807150
[29]  Fan, T.-H., Wang, G.-T. and Yu, J.-H. (2014) A New Algorithm in Bayesian Model Averaging in Regression Models. Communications in Statistics-Simulation and Computation, 43, 315-328.
http://dx.doi.org/10.1080/03610918.2012.700750
[30]  Madadgar, S. and Moradkhani, H. (2014) Improved Bayesian Multimodeling: Integration of Copulas and Bayesian Model Averaging. Water Resources Research, 50, 9586-9603.
http://dx.doi.org/10.1002/2014WR015965
[31]  Koop, G., Leon-Gonzalez, R. and Strachan, R. (2012) Bayesian Model Averaging in the Instrumental Variable Regression Model. Journal of Econometrics, 171, 237-250.
http://dx.doi.org/10.1016/j.jeconom.2012.06.005
[32]  Clyde, M.A., Ghosh, J. and Littman, M.L. (2011) Bayesian Adaptive Sampling for Variable Selection and Model Averaging. Journal of Computational and Graphical Statistics, 20, 80-101.
http://dx.doi.org/10.1198/jcgs.2010.09049
[33]  Clyde, M.A. and Iversen, E.S. (2015) Bayesian Model Averaging in the M-Open Framework. In: Damien, P., Dellaportas, P., Polson, N.G. and Stephens, D.A., Eds., Bayesian Theory and Applications, Oxford University Press, Oxford, 483-498.
[34]  R Development Core Team (2015) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.
[35]  Gelman, A., Carlin, J.B., Stern, H.S. and Rubin, D.B. (2014) Bayesian Data Analysis. Chapman and Hall/CRC, London.
[36]  Good, I.J. (1952) Rational Decisions. Journal of the Royal Statistical Society, Series B, 14, 107-114.
[37]  Abd, E.B.A. and Al-Zaydi, A.M. (2015) Bayesian Prediction of Future Generalized Order Statistics from a Class of Finite Mixture Distributions. Open Journal of Statistics, 5, 585-599.
http://dx.doi.org/10.4236/ojs.2015.56060
[38]  Abd, E.B.A. and Al-Zaydi, A.M. (2013) Inferences under a Class of Finite Mixture Distributions Based on Generalized Order Statistics. Open Journal of Statistics, 3, 231-244.
http://dx.doi.org/10.4236/ojs.2013.34027
[39]  Al-Hussaini, E.K. and Hussein, M. (2012) Estimation under a Finite Mixture of Exponentiated Exponential Components Model and Balanced Square Error Loss. Open Journal of Statistics, 2, 28-38.
http://dx.doi.org/10.4236/ojs.2012.21004
[40]  Ley, E. and Steel, M.F.J. (2012) Mixtures of g-Priors for Bayesian Model Averaging with Economic Applications. Journal of Econometrics, 171, 251-266.
http://dx.doi.org/10.1016/j.jeconom.2012.06.009
[41]  Schafer, M., Radon, Y., Klein, T., Herrmann, S., Schwender, H., Verveer, P.J. and Ickstadt, K. (2015) A Bayesian Mixture Model to Quantify Parameters of Spatial Clustering. Computational Statistics and Data Analysis, 92, 163-176.
http://dx.doi.org/10.1016/j.csda.2015.07.004
[42]  Yao, W. (2012) Model Based Labeling for Mixture Models. Statistics and Computing, 22, 337-347.
http://dx.doi.org/10.1007/s11222-010-9226-8
[43]  Sabourin, A. and Naveau, P. (2014) Bayesian Dirichlet Mixture Model for Multivariate Extremes: A Re-Parametrization. Computational Statistics and Data Analysis, 71, 542-567.
http://dx.doi.org/10.1016/j.csda.2013.04.021
[44]  Rodriguez, C.E. and Walker, S.G. (2014) Univariate Bayesian Nonparametric Mixture Modeling with Unimodal Kernels. Statistics and Computing, 24, 35-49.
http://dx.doi.org/10.1007/s11222-012-9351-7

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133