In order to investigate the effect of the pressure buffer gas and
frequency on the output power, a copper vapor laser with active medium length
of 60 cm and bore of 16 mm has been operated and optimized using air as a
buffer gas. The observed oscillatory behavior of the output power versus
frequency is in good agreement with the previous reports. The measured results
show the maximum output power of ~1.6W at the optimum pressure of 3.8 torr and
frequency of 17 kHz. Abundance of the air and reduction of the system volume
due to elimination of the gas handling system as well as the economically
benefits are the advantages of the employing air as a buffer gas in the copper
vapor laser operation.
References
[1]
Marjani, S. (2013) Various Elements of Heat Sources within an Optimized Photonic Crystal Vertical Cavity Surface Emitting Laser: Influence of Hole Etching Depth. Asian Journal of Chemistry, 25, 4153-4156. http://dx.doi.org/10.14233/ajchem.2013.13281
[2]
Rafighi, F., Behrouzinia, S., Khorasani, K., Sabaghi, M. and Marjani, S. (2016) The Electrical Parameters Modeling and Experimentation of Copper Vapor Laser. Circuits and Systems, 7, 23-28. http://dx.doi.org/10.4236/cs.2016.71003
[3]
Behrouzinia, S., Khorasani, K., Marjani, S., Sabaghi, M., Aeinehvand, M.E. and Mohammadpour Lima, S. (2016) Experimental Study of Buffer Gas Flow Rate Effect on Output Power of a Copper Vapor Laser. Optics and Photonics Journal, 6, 24-28. http://dx.doi.org/10.4236/opj.2016.62004
[4]
Marjani, S. (2013) Optimization of an InGaAsP Vertical-Cavity Surface-Emitting Diode Lasers for High-Power Single-Mode Operation in 1550 nm Optical-Fibre Communication Systems. Asian Journal of Chemistry, 25, 4150-4152. http://dx.doi.org/10.14233/ajchem.2013.13186
[5]
Faez, R., Marjani, A. and Marjani, S. (2011) Design and Simulation of a High Power Single Mode 1550nm InGaAsP VCSELs. IEICE Electronics Express, 8, 1096-1101. http://dx.doi.org/10.1587/elex.8.1096
[6]
Marjani, S., Faez, R. and Hosseini, S.E. (2013) Threshold Characteristics Analysis of InP-Based PhC VCSEL with Buried Tunnel Junction. The 21st Iranian Conference on Electrical Engineering (ICEE), Ferdowsi University of Mashhad, Mashhad, 1-4. http://dx.doi.org/10.1109/iraniancee.2013.6599783
[7]
Majdabadi, A., Marjani, S. and Sabaghi, M. (2014) Threshold Characteristics Enhancement of a Single Mode 1.55 μmInGaAsP Photonic Crystal VCSEL for Optical Communication Systems. Optics and Photonics Journal, 4, 296-303. http://dx.doi.org/10.4236/opj.2014.410029
[8]
Marjani, S., Faez, R. and Marjani, H. (2011) An Impact of the Hole Etching Depth within a Photonic Crystal VCSEL on Its Heat Sources. Australian Journal of Basic and Applied Sciences, 5, 766-770.
[9]
Marjani, S., Faez, R. and Marjan, A. (2011) Design and Modeling of a High Single Mode Power Long Wavelength InGaAsP Photonic Crystal VCSEL. Australian Journal of Basic and Applied Sciences, 5, 1064-1069.
[10]
Marjani, A., Marjani, S. and Shirazian, S. (2011) Numerical Simulation of Silicon Carbide Polymers (6H-SiC & 3C-SiC) as the Active Area for 0.83 μm Wavelength Semiconductor Laser. The 14th Iranian Physical Chemistry Conference, University of Tehran, Kish, 876-878.
[11]
Marjani, S., Faez, R. and Marjani, H. (2011) Analysis and Design of Semiconductor Laser with Silicon Carbide Polymers (6H-SiC and 3C-SiC). Australian Journal of Basic and Applied Sciences, 5, 1060-1063.
[12]
Marjani, S., Rahnama, M. and Marjani, H. (2011) Numerical Optimization of Single-Mode InGaAsP Vertical-Cavity Surface-Emitting Lasers. Australian Journal of Basic and Applied Sciences, 5, 1207-1211.
[13]
Marjani, S. and Marjani, H. (2011) Effects of Lattice Temperature on the Various Elements of Heat Sources in a Long Wavelength InGaAsP Photonic Crystal VCSEL. Australian Journal of Basic and Applied Sciences, 5, 1257-1261.
[14]
Marjani, S. and Marjani, H. (2011) Analysis of Lattice Temperature Effects on a Long Wavelength InGaAsP Photonic Crystal VCSEL. Australian Journal of Basic and Applied Sciences, 5, 1374-1378.
[15]
Marjani, S. and Marjani, H. (2012) Optimization of a Long Wavelength Vertical-Cavity Surface-Emitting Lasers by Employing Photonic Crystal. Asian Journal of Chemistry, 24, 3174-3176.
[16]
Marjani, S. and Marjani, H. (2012) Self-Heating Effects in a Silicon Carbide Polymers (6H-SiC and 3C-SiC) Semiconductor Laser. Asian Journal of Chemistry, 24, 3145-3147.
[17]
Marjani, S. and Marjani, H. (2012) Effects of Hole Etching Depth in a Long Wavelength InGaAsP Photonic Crystal Vertical Cavity Surface Emitting Laser. Asian Journal of Chemistry, 24, 3194-3196.
[18]
Marjani, S. and Marjani, H. (2012) Effects of Lattice Temperature on the Various Elements of Heat Sources in Silicon Carbide Polymers (6H-SiC and 3C-SiC) Semiconductor Laser. Asian Journal of Chemistry, 24, 3123-3125.
[19]
Marjani, S., Faez, R. and Marjani, H. (2012) Analysis of the Various Elements of Heat Sources in Silicon Carbide Polymers (6H-SiC and 3C-SiC) Semiconductor Laser. Asian Journal of Chemistry, 24, 2333-2335.
[20]
Marjani, S., Faez, R. and Marjani, H. (2012) Design and Modeling of a Semiconductor Laser by Employing Silicon Carbide Polymers (6H-SiC, 3C-SiC and 4H-SiC). Asian Journal of Chemistry, 24, 2177-2179.
[21]
Marjani, S., Faez, R. and Hosseini, S.E. (2013) Analysis of Lattice Temperature Effects on a GaInP/6H-SiC Strained Quantum-Well Lasers. Asian Journal of Chemistry, 25, 4715-4717.
[22]
Madadi, R., Marjani, S. and Faez, R. (2013) Silicon Carbide Polymers (6H-SiC, 3C-SiC and 4H-SiC) Semiconductor Laser: Influence of Self-Heating. The 3rd Iranian Conference on Optics and Laser Engineering (ICOLE), Isfahan, 8-10 October 2013, 1069-1072.
[23]
Naeemi, M.A., Marjani, S. and Peiravi, A. (2014) Time to Failure Analysis of Single Mode Long-Wavelength InGaAsP Vertical-Cavity Surface-Emitting Lasers. The 22st Iranian Conference on Electrical Engineering (ICEE), Tehran, 20-22 May 2014, 43-47. http://dx.doi.org/10.1109/iraniancee.2014.6999500
[24]
Khosroabadi, S., Keshmiri, S.H. and Marjani, S. (2014) Design of a High Efficiency CdS/CdTe Solar Cell with Optimized Step Doping, Film Thickness, and Carrier Lifetime of the Absorption Layer. Journal of the European Optical Society, 9, 14052-1-14052-6. http://dx.doi.org/10.2971/jeos.2014.14052
[25]
Sabaghi, M., Majdabadi, A., Marjani, S. and Khosroabadi, S. (2015) Optimization of High-Efficiency CdS/CdTe Thin Film Solar Cell Using Step Doping Grading and Thickness of the Absorption Layer. Oriental Journal of Chemistry, 31, 891-896. http://dx.doi.org/10.13005/ojc/310232
[26]
Sabaghi, M., Majdabadi, A., Khosroabadi, S. and Marjani, S. (2015) A Novel Ultrathin CdS/CdTe Solar Cell with Conversion Efficiency of 31.2% for Nano-Area Application. Proceedings of the Progress in Electromagnetics Research Symposium (PIERS), Prague, 6-9 July 2015, 1152-1155.
[27]
Marjani, S., Khosroabadi, S. and Sabaghi, M. (2016) A High Efficiency Ultrathin CdTe Solar Cell for Nano-Area Applications. Optics and Photonics Journal, 6, 15-23. http://dx.doi.org/10.4236/opj.2016.62003
[28]
Sabaghi, M., Majdabadi, A. and Oskui, H.S. (2007) Intelligent Controlling on Diode Laser Wavelength Based Embedded System. The International Universities Power Engineering Conference (UPEC), Brighton, 4-6 September 2007, 387-391.
[29]
Withford, M.J., Brown, D.J.W., Mildren, R.P., Carman, R.J., Marshall, G.D. and Piper, J.A. (2004) Advances in Copper Laser Technology: Kinetic Enhancement. Progress in Quantum Electronics, 28, 165-196. http://dx.doi.org/10.1016/j.pquantelec.2003.12.001
[30]
Little, C.E. (1999) Metal Vapor Lasers. John Wiley & Sons, Chichester.
[31]
Huang, Z.G., Namba, K. and Shimizu, F. (1986) Influence of Molecular Gases on the Output Characteristics of a Copper Vapor Laser. Japanese Journal of Applied Physics, 25, 1677-1679. http://dx.doi.org/10.1143/JJAP.25.1677
[32]
Grant, B. (1997) Lasers Improve Uranium Enrichment. Photonics Spectra. http://www.photonics.com/Article.aspx?AID=1201
[33]
Behrouzinia, S., Sadighi, R. and Parvin, P. (2003) Pressure Dependence of Small-Signal Gain and Saturation Intensity of a Copper Vapor Laser. Applied Optics, 42, 1013-1018. http://dx.doi.org/10.1364/AO.42.001013
[34]
Behrouzinia, S., Sadighi, R. and Parvin, P. (2004) Temperature Dependence of the Amplifying Parameters of a Copper Vapor Laser. Laser Physics, 14, 1050-1053.
[35]
Lesnoi, M.A. (1984) Influence of Te Gas Mixture Composition and Cathode Material on the Output Power of Copper Vapor Laser. Soviet Journal of Quantum Electronics, 14, 142-148. http://dx.doi.org/10.1070/QE1984v014n01ABEH004664
[36]
Ferrar, C.M. (1974) Buffer Gas Effects in a Rapidly Pulsed Copper Vapor Laser. IEEE Journal of Quantum Electronics, 10, 655-657. http://dx.doi.org/10.1109/JQE.1974.1068371
[37]
Bokhan, P.A. and Solomonov, V.I. (1974) Mechanism of Laser Action in Copper Vapor. Soviet Journal of Quantum Electronics, 3, 481-486. http://dx.doi.org/10.1070/QE1974v003n06ABEH005640
[38]
Withford, M.J., Brown, D.J.W., Coutts, D.W. and Piper, J.A. (1995) Copper Vapor Laser Unstable Resonator Oscillator and Oscillator-Amplifier Characteristics. IEEE Journal of Quantum Electronics, 31, 898-902. http://dx.doi.org/10.1109/3.375935
[39]
Hayashi, K., Iseki, Y., Szuki, S., Watanabe, I., Noda, E. and Morimiya, O. (1992) Improvement in the Output Characteristics of a Large-Bore Copper Vapor Laser by Hydrogen. Japanese Journal of Applied Physics, 31, 689-697. http://dx.doi.org/10.1143/JJAP.31.L1689
[40]
Khorasani, K., Behrouzinia, S. and Salehinia, D. (2008) Air as a Buffer Gas in Metal-Vapor Lasers. Journal of Russian Laser Research, 29, 599-603. http://dx.doi.org/10.1007/s10946-008-9047-9
[41]
Zoghi, M., Parvin, P., Behrouzinia, S., Salehinia, D., Kharasani, K. and Mehravaran, H. (2009) Acoustic Effects of Metal-Vapor Lasers. Applied Optics, 48, 3460-3467. http://dx.doi.org/10.1364/AO.48.003460
[42]
Kharasani, K., Salehinia, D., Behrouzinia, S., Sajad, B. and Parvizian, M. (2008) Frequency Dependence of the Output Power of Metal Vapor Lasers. Optics Communications, 281, 3799-3801. http://dx.doi.org/10.1016/j.optcom.2008.03.059