The conventional singular hot big bang scenario is questioned. A new model which does not include an initial singularity g00 = ∞ at t = 0, neither a brief period of exponential expansion a(t)~eHt is considered. The main parameters T and ρ are kept finite. The beginning of the universe we occupy is revisited in the framework of quantum field theory in curved spacetime. However, a straightforward alternative mechanism for not only solving the most fundamental problems in modern cosmology-flatness problem, horizon problem and magnetic monopole problem, but even suppressing their number is provided. In the particular paper, we discuss the essential role quantum entanglement plays in the structure of the spacetime and the apparent contradiction between quantum mechanics and general relativity in terms of classical field theory in 3 + 1 dimensions.
References
[1]
Guth, A.H. (1981) Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems. Physical Review D, 23, 347. http://dx.doi.org/10.1103/physrevd.23.347
[2]
Linde, A. (2007) Inflationary Cosmology. arXiv:0705.0164v2 [hep-th].
[3]
Tsujikawa, S. (2003) Introductory Review of Cosmic Inflation. arXiv:hep-ph/0304257v1.
[4]
Liddle, A.R. (1999) An Introduction to Cosmological Inflation. arXiv:astro-ph/9901124v1.
[5]
Planck Collaboration 2013.
[6]
Ijjas, A., Steinhardt, P.J. and Loeb, A. (2013) Inflationary Paradigm in Trouble after Planck 2013. arXiv:1304.2785v2 [astro-ph.CO].
[7]
Linde, A.D. (1982) A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems. Physics Letters B, 108, 389.
http://dx.doi.org/10.1016/0370-2693(82)91219-9
[8]
Albrecht, A. and Steinhardt, P.J. (1982) Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking. Physical Review Letters, 48, 1220. http://dx.doi.org/10.1103/PhysRevLett.48.1220
[9]
Hawking, S.W. (1975) Particle Creation by Black Holes. Physics, 43, 199-220. http://dx.doi.org/10.1007/bf02345020
[10]
Parikh, M.K. and Wilczek, F. (2000) Hawking Radiation as Tunneling. Physical Review Letters, 85, 5042.
http://dx.doi.org/10.1103/PhysRevLett.85.5042
[11]
Parikh, M.K. (2004) A Secret Tunnel through the Horizon. arXiv:hep-th/0405160.
[12]
Corda, C. (2014) Precise Model of Hawking Radiation from the Tunnelling Mechanism. arXiv:1411.1213v2 [physics. gen-ph].
[13]
Corda, C. (2013) Time-Dependent Schrodinger Equation for Black Hole Evaporation: No Information Loss. arXiv:1 304.1899v5 [gr-qc].
[14]
Mavromatos, N.E. (1996) Eluding the No-Hair Conjecture for Black Holes. arXiv:gr-qc/9606008v1.
[15]
Chrusciel, P.T., Costa, J.L. and Heusler, M. (2012) Stationary Black Holes: Uniqueness and Beyond. arXiv:1205.6112 [gr-qc].
[16]
Frampton, P.H. (2015) Cyclic Entropy: An Alternative to Inflationary Cosmology. arXiv:1501.03054v2 [gr-qc].
[17]
Lehners, J.-L. (2010) Ekpyrotic Nongaussianity: A Review. Advances in Astronomy, 2010, Article ID: 903907.
http://dx.doi.org/10.1155/2010/903907
[18]
Ray, M.W., Ruokokoski, E., Kandel, S., Mottonen, M. and Hall, D.S. (2014) Observation of Dirac Monopoles in a Synthetic Magnetic Field. arXiv:1408.3133v1 [cond-mat.quant-gas].
[19]
’tHooft, G. (1999) Quantum Gravity as a Dissipative Deterministic System. arXiv:gr-qc/9903084v3.
[20]
Van Raamsdonk, M. (2010) Building up Spacetime with Quantum Entanglement. arXiv:1005.3035v1 [hep-th].
[21]
Maldacena, J. and Susskind, L. (2013) Cool Horizons for Entangled Black Holes. arXiv:1306.0533v2 [hep-th].