全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Anisotropy of Photocatalytic Properties in Nanostructured Photocatalysts

DOI: 10.4236/snl.2016.62002, PP. 11-30

Keywords: Anisotropy, Carriers, Effective Mass, Photocatalytic Properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

Energy band engineering and the nature of surface/interface of a semiconductor play a significant role in searching high efficiency photocatalysts. Actually, the active facets, morphology controlling, especially the exposed facets modulation of photocatalysts during preparation are very desirable. In order to achieve high photocatalytic performance, intrinsic mechanism of such anisotropic properties should be fully considered. In this review, we mainly emphasis on the latest research developments of several extensively investigated photocatalysts and their anisotropic photocatalytic properties, as well as the correlation between effective masses anisotropy and photocatalytic properties. It will be helpful to understand the photocatalytic mechanism and promote rational development of photocatalyst for wide applications.

References

[1]  Fujishima, A. and Honda, K. (1972) Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238, 37-38.
http://dx.doi.org/10.1038/238037a0
[2]  Tong, H., et al. (2012) Nano-Photocatalytic Materials: Possibilities and Challenges. Advanced Materials, 24, 229-251.
http://dx.doi.org/10.1002/adma.201102752
[3]  Dozzi, M. and Selli, E. (2013) Specific Facets-Dominated Anatase TiO2: Fluorine-Mediated Synthesis and Photoactivity. Catalysts, 3, 455-485.
http://dx.doi.org/10.3390/catal3020455
[4]  Sun, S. and Yang, Z. (2014) Recent Advances in Tuning Crystal Facets of Polyhedral Cuprous Oxide Architectures. RSC Advances, 4, 3804-3822.
http://dx.doi.org/10.1039/C3RA45445B
[5]  Kuo, C.H. and Huang, M.H. (2010) Morphologically Controlled Synthesis of Cu2O Nanocrystals and Their Properties. Nano Today, 5, 106-116.
http://dx.doi.org/10.1016/j.nantod.2010.02.001
[6]  Ong, W.J., Tan, L.L., Chai, S.P., Yong, S.T. and Mohamed, A.R. (2014) Facet-Dependent Photocatalytic Properties of TiO2-Based Composites for Energy Conversion and Environmental Remediation. ChemSusChem, 7, 690-719.
http://dx.doi.org/10.1002/cssc.201300924
[7]  Huang, M.H., Rej, S. and Chiu, C.Y. (2015) Facet-Dependent Optical Properties Revealed through Investigation of Polyhedral Au-Cu2O and Bimetallic Core-Shell Nanocrystals. Small, 11, 2716-2726.
http://dx.doi.org/10.1002/smll.201403542
[8]  Martin, D.J., et al. (2015) Efficient Visible Driven Photocatalyst, Silver Phosphate: Performance, Understanding and Perspective. Chemical Society Reviews, 44, 7808-7828.
http://dx.doi.org/10.1039/C5CS00380F
[9]  Ong, W.J., Tan, L.L., Chai, S.P., Yong, S.T. and Mohamed, A.R. (2014) Highly Reactive {001} Facets of TiO2-Based Composites: Synthesis, Formation Mechanism and Characterization. Nanoscale, 6, 1946-2008.
http://dx.doi.org/10.1039/c3nr04655a
[10]  Yang, H.G., et al. (2008) Anatase TiO2 Single Crystals with a Large Percentage of Reactive Facets. Nature, 453, 638-641.
http://dx.doi.org/10.1038/nature06964
[11]  Martin, D.J., Umezawa, N., Chen, X., Ye, J. and Tang, J. (2013) Facet Engineered Ag3PO4 for Efficient Water Photooxidation. Energy & Environmental Science, 6, 3380-3386.
http://dx.doi.org/10.1039/c3ee42260g
[12]  Umezawa, N., Shuxin, O. and Ye, J. (2011) Theoretical Study of High Photocatalytic Performance of Ag3PO4. Physical Review B, 83, Article ID: 035202.
http://dx.doi.org/10.1103/PhysRevB.83.035202
[13]  Wang, G., et al. (2012) Controlled Synthesis of Ag2O Microcrystals with Facet-Dependent Photocatalytic Activities. Journal of Materials Chemistry, 22, 21189-21194.
http://dx.doi.org/10.1039/c2jm35010f
[14]  Ma, X., Dai, Y., Guo, M. and Huang, B. (2013) Relative Photooxidation and Photoreduction Activities of the {100}, {101}, and {001} Surfaces of Anatase TiO2. Langmuir, 29, 13647-13654.
http://dx.doi.org/10.1021/la403351v
[15]  Roy, N., Sohn, Y. and Pradhan, D. (2013) Synergy of Low-Energy {101} and High-Energy {001} TiO2 Crystal Facets for Enhanced Photocatalysis. ACS Nano, 7, 2532-2540.
http://dx.doi.org/10.1021/nn305877v
[16]  Zhang, J., Zhou, P., Liu, J. and Yu, J. (2014) New Understanding of the Difference of Photocatalytic Activity among Anatase, Rutile and Brookite TiO2. Physical Chemistry Chemical Physics, 16, 20382-20386.
http://dx.doi.org/10.1039/C4CP02201G
[17]  Ma, X., Dai, Y., Guo, M. and Huang, B. (2012) The Role of Effective Mass of Carrier in the Photocatalytic Behavior of Silver Halide-Based Ag@AgX (X = Cl, Br, I): A Theoretical Study. ChemPhysChem, 13, 2304-2309.
http://dx.doi.org/10.1002/cphc.201200159
[18]  Liu, J., Chen, S. and Zhu, Y. (2012) Electronic Structures and Effective Masses of Photogenerated Carriers of CaZrTi2O7 Photocatalyst: First-Principles Calculations. Solid State Communications, 152, 1650-1654.
http://dx.doi.org/10.1016/j.ssc.2012.05.004
[19]  Zhao, Z., Li, Z. and Zou, Z. (2011) Electronic Structure and Optical Properties of Monoclinic Clinobisvanite BiVO4. Physical Chemistry Chemical Physics, 13, 4746-4753.
http://dx.doi.org/10.1039/c0cp01871f
[20]  Yan, S., et al. (2013) An Ion-Exchange Phase Transformation to ZnGa2O4 Nanocube towards Efficient Solar Fuel Synthesis. Advanced Functional Materials, 23, 758-763.
http://dx.doi.org/10.1002/adfm.201202042
[21]  Li, Z., et al. (2014) Tuning Photocatalytic Performance of the Near-Infrared-Driven Photocatalyst Cu2(OH)PO4 Based on Effective Mass and Dipole Moment. Physical Chemistry Chemical Physics, 16, 3267-3273.
http://dx.doi.org/10.1039/c3cp53381f
[22]  Bi, Y., et al. (2012) Photocatalytic and Photoelectric Properties of Cubic Ag3PO4 Sub-Microcrystals with Sharp Corners and Edges. Chemical Communications, 48, 3748-3750.
http://dx.doi.org/10.1039/c2cc30363a
[23]  Bi, Y., Hu, H.Y., Ouyang, S.X., Jiao, Z.B., Lu, G.X. and Ye, J.H. (2012) Selective Growth of Metallic Ag Nanocrystals on Ag3PO4 Submicro-Cubes for Photocatalytic Applications. Chemistry, 18, 14272-14275.
http://dx.doi.org/10.1002/chem.201201435
[24]  Bi, Y., Ouyang, S., Umezawa, N., Cao, J. and Ye, J.H. (2011) Facet Effect of Single-Crystalline Ag3PO4 Sub-Microcrystals on Photocatalytic Properties. Journal of the American Chemical Society, 133, 6490-6492.
http://dx.doi.org/10.1021/ja2002132
[25]  Wang, H., et al. (2012) Facile Synthesis of Ag3PO4 Tetrapod Microcrystals with an Increased Percentage of Exposed {110} Facets and Highly Efficient Photocatalytic Properties. CrystEngComm, 14, 8342-8344.
http://dx.doi.org/10.1039/c2ce26366a
[26]  Wang, J., et al. (2013) Facile Synthesis of Novel Ag3PO4 Tetrapods and the {110} Facets-Dominated Photocatalytic Activity. CrystEngComm, 15, 39-42.
http://dx.doi.org/10.1039/C2CE26060C
[27]  Jiao, Z.B., et al. (2013) Concave Trisoctahedral Ag3PO4 Microcrystals with High-Index Facets and Enhanced Photocatalytic Properties. Chemical Communications, 49, 636-638.
http://dx.doi.org/10.1039/C2CC37324F
[28]  Wang, H., et al. (2012) Facet-Dependent Photocatalytic Properties of AgBr Nanocrystals. Small, 8, 2802-2806.
http://dx.doi.org/10.1002/smll.201200055
[29]  Wang, H., et al. (2012) Facile Synthesis of AgBr Nanoplates with Exposed {111} Facets and Enhanced Photocatalytic Properties. Chemical Communications, 48, 275-277.
http://dx.doi.org/10.1039/C1CC16423F
[30]  Zhang, H., Lu, Y., Liu, H. and Fang, J. (2015) One-Pot Synthesis of High-Index Faceted AgCl Nanocrystals with Trapezohedral, Concave Hexoctahedral Structures and Their Photocatalytic Activity. Nanoscale, 7, 11591-11601.
http://dx.doi.org/10.1039/C5NR02049B
[31]  Wang, H., et al. (2012) Polyhedral AgBr Microcrystals with an Increased Percentage of Exposed {111} Facets as a Highly Efficient Visible-Light Photocatalyst. Chemistry, 18, 4620-4626.
http://dx.doi.org/10.1002/chem.201102694
[32]  Kuang, Q., Zheng, X. and Yang, S. (2014) AgI Microplate Monocrystals with Polar {0001} Facets: Spontaneous Photocarrier Separation and Enhanced Photocatalytic Activity. Chemistry, 20, 2637-2645.
http://dx.doi.org/10.1002/chem.201303642
[33]  Li, R., et al. (2013) Spatial Separation of Photogenerated Electrons and Holes among {010} and {110} Crystal Facets of BiVO4. Nature Communications, 4, Article No. 1432.
http://dx.doi.org/10.1038/ncomms2401
[34]  Li, R., Han, H., Zhang, F., Wang, D. and Li, C. (2014) Highly Efficient Photocatalysts Constructed by Rational Assembly of Dual-Cocatalysts Separately on Different Facets of BiVO4. Energy & Environmental Science, 7, 1369-1376.
http://dx.doi.org/10.1039/c3ee43304h
[35]  Liu, T., Zhou, X., Dupuisc, M. and Li, C. (2015) The Nature of Photogenerated Charge Separation among Different Crystal Facets of BiVO4. Physical Chemistry Chemical Physics, 17, 23503-23510.
http://dx.doi.org/10.1039/C5CP04299B
[36]  Zhu, J., et al. (2015) Direct Imaging of Highly Anisotropic Photogenerated Charge Separations on Different Facets of a Single BiVO4 Photocatalyst. Angewandte Chemie International Edition, 54, 9111-9114.
http://dx.doi.org/10.1002/anie.201504135
[37]  Wang, D., et al. (2011) Crystal Facet Dependence of Water Oxidation on BiVO4 Sheets under Visible Light Irradiation. Chemistry, 17, 1275-1282.
http://dx.doi.org/10.1002/chem.201001636
[38]  Xi, G. and Ye, J.H. (2010) Synthesis of Bismuth Vanadate Nanoplates with Exposed {001} Facets and Enhanced Visible-Light Photocatalytic Properties. Chemical Communications, 46, 1893-1895.
http://dx.doi.org/10.1039/b923435g
[39]  Thalluri, S.M., et al. (2014) Green-Synthesized BiVO4 Oriented along {040} Facets for Visible-Light-Driven Ethylene Degradation. Industrial & Engineering Chemistry Research, 53, 2640-2646.
http://dx.doi.org/10.1021/ie403999g
[40]  Jiang, J., Zhao, K., Xiao, X. and Zhang, L. (2012) Synthesis and Facet-Dependent Photoreactivity of BiOCl Single- Crystalline Nanosheets. Journal of the American Chemical Society, 134, 4473-4476.
http://dx.doi.org/10.1021/ja210484t
[41]  Ye, L., Zan, L., Tian, L., Peng, T. and Zhang, J. (2011) The {001} Facets-Dependent High Photoactivity of BiOCl Nanosheets. Chemical Communications, 47, 6951-6953.
http://dx.doi.org/10.1039/c1cc11015b
[42]  Cui, Z., Mi, L. and Zeng, D. (2013) Oriented Attachment Growth of BiOCl Nanosheets with Exposed {110} Facets and Photocatalytic Activity of the Hierarchical Nanostructures. Journal of Alloys and Compounds, 549, 70-76.
http://dx.doi.org/10.1016/j.jallcom.2012.09.075
[43]  Peng, Y., Wang, D., Zhou, H.Y. and Xu, A.W. (2015) Controlled Synthesis of Thin BiOCl Nanosheets with Exposed {001} Facets and Enhanced Photocatalytic Activities. CrystEngComm, 17, 3845-3851.
http://dx.doi.org/10.1039/C5CE00289C
[44]  Li, Y., Wang, Q., Liu, B. and Zhang, J. (2015) The {001} Facets-Dependent Superior Photocatalytic Activities of BiOCl Nanosheets under Visible Light Irradiation. Applied Surface Science, 349, 957-969.
http://dx.doi.org/10.1016/j.apsusc.2015.05.100
[45]  Wang, D. H., et al. (2012) Nanosheet-Constructed Porous BiOCl with Dominant {001} Facets for Superior Photosensitized Degradation. Nanoscale, 4, 7780-7785.
http://dx.doi.org/10.1039/c2nr32533k
[46]  Zhang, X., et al. (2014) Synthesis of a Highly Efficient BiOCl Single-Crystal Nanodisk Photocatalyst with Exposing {001} Facets. ACS Applied Materials & Interfaces, 6, 7766-7772.
http://dx.doi.org/10.1021/am5010392
[47]  Ye, L., Su, Y., Jin, X., Xie, H. and Zhang, C. (2014) Recent Advances in BiOX (X = Cl, Br and I) Photocatalysts: Synthesis, Modification, Facet Effects and Mechanisms. Environmental Science: Nano, 1, 90-112.
http://dx.doi.org/10.1039/c3en00098b
[48]  Zhang, D., Li, J., Wang, Q. and Wu, Q. (2013) High {001} Facets Dominated BiOBr Lamellas: Facile Hydrolysis Preparation and Selective Visible-Light Photocatalytic Activity. Journal of Materials Chemistry A, 1, 8622-8629.
http://dx.doi.org/10.1039/c3ta11390f
[49]  Ye, L., Liu, J., Jiang, Z., Peng, T. and Zan, L. (2013) Facets Coupling of BiOBr-g-C3N4 Composite Photocatalyst for Enhanced Visible-Light-Driven Photocatalytic Activity. Applied Catalysis B: Environmental, 142-143, 1-7.
http://dx.doi.org/10.1016/j.apcatb.2013.04.058
[50]  Sun, L., et al. (2015) Enhanced Visible-Light Photocatalytic Activity of BiOI/BiOCl Heterojunctions: Key Role of Crystal Facet Combination. ACS Catalysis, 5, 3540-3551.
http://dx.doi.org/10.1021/cs501631n
[51]  Ye, L., Tian, L., Peng, T. and Zan, L. (2011) Synthesis of Highly Symmetrical BiOI Single-Crystal Nanosheets and Their {001} Facet-Dependent Photoactivity. Journal of Materials Chemistry, 21, 12479-12484.
http://dx.doi.org/10.1039/c1jm11005e
[52]  Ye, L., Su, Y.R., Jin, X.L., Xie, H.Q., Cao, F.P. and Guo, Z. (2014) Which Affect the Photoreactivity of BiOBr Single- Crystalline Nanosheets with Different Hydrothermal pH Value: Size or Facet? Applied Surface Science, 311, 858-863.
[53]  Xu, H., Ouyang, S.X., Li, P., Kako, T. and Ye, J.H. (2013) High-Active Anatase TiO2 Nanosheets Exposed with 95% {100} Facets toward Efficient H2 Evolution and CO2 Photoreduction. ACS Applied Materials & Interfaces, 5, 1348- 1354.
http://dx.doi.org/10.1021/am302631b
[54]  Lazzeri, M., Vittadini, A. and Selloni, A. (2001) Structure and Energetics of Stoichiometric TiO2 Anatase Surfaces. Physical Review B, 63, Article ID: 155409.
http://dx.doi.org/10.1103/PhysRevB.63.155409
[55]  Selloni, A. (2008) Anatase Shows Its Reactive Side. Nature Materials, 7, 613-615.
http://dx.doi.org/10.1038/nmat2241
[56]  Herman, G.S., Sievers, M.R. and Gao, Y. (2000) Structure Determination of the Two-Domain (1 × 4) Anatase TiO2 (001) Surface. Physical Review Letters, 84, 3354-3357.
http://dx.doi.org/10.1103/PhysRevLett.84.3354
[57]  Sun, L., Zhao, Z., Zhou, Y. and Liu, L. (2012) Anatase TiO2 Nanocrystals with Exposed {001} Facets on Graphene Sheets via Molecular Grafting for Enhanced Photocatalytic Activity. Nanoscale, 4, 613-620.
http://dx.doi.org/10.1039/C1NR11411E
[58]  Liu, S., Yu, J. and Jaroniec, M. (2011) Anatase TiO2 with Dominant High-Energy {001} Facets: Synthesis, Properties, and Applications. Chemistry of Materials, 23, 4085-4093.
http://dx.doi.org/10.1021/cm200597m
[59]  Xu, H., et al. (2013) Anatase TiO2 Single Crystals Exposed with High-Reactive {111} Facets toward Efficient H2 Evolution. Chemistry of Materials, 25, 405-411.
http://dx.doi.org/10.1021/cm303502b
[60]  Pan, J., Liu, G., Lu, G.Q. and Cheng, H.M. (2011) On the True Photoreactivity Order of {001}, {010}, and {101} Facets of Anatase TiO2 Crystals. Angewandte Chemie International Edition, 50, 2133-2137.
http://dx.doi.org/10.1002/anie.201006057
[61]  Chen, C.D., et al. (2015) Synthesis of [111]- and {010}-Faceted Anatase TiO2 Nanocrystals from Tri-Titanate Nanosheets and Their Photocatalytic and DSSC Performances. Nanoscale, 7, 7980-7991.
http://dx.doi.org/10.1039/C5NR00069F
[62]  Zhang, J., et al. (2014) Nanoscale Anatase TiO2 with Dominant {111} Facets Shows High Photocatalytic Activity. Applied Surface Science, 311, 521-528.
http://dx.doi.org/10.1016/j.apsusc.2014.05.103
[63]  Zhang, J., et al. (2014) Regulating Photocatalytic Selectivity of Anatase TiO2 with {101}, {001}, and {111} Facets. Journal of the American Ceramic Society, 97, 4005-4010.
http://dx.doi.org/10.1111/jace.13187
[64]  Gordon, T.R., et al. (2012) Nonaqueous Synthesis of TiO2 Nanocrystals Using TiF4 to Engineer Morphology, Oxygen Vacancy Concentration, and Photocatalytic Activity. Journal of the American Chemical Society, 134, 6751-6761.
http://dx.doi.org/10.1021/ja300823a
[65]  Jiang, G.D., Wei, M., Yuan, S.D. and Chang, Q. (2016) Efficient Photocatalytic Reductive Dechlorination of 4-Chlorophenolto Phenol on {001}/{101} Facets Co-Exposed TiO2 Nanocrystals. Applied Surface Science, 362, 418-426.
http://dx.doi.org/10.1016/j.apsusc.2015.11.229
[66]  Grabowska, E., Diak, M., Marchelek, M. and Zaleska, A. (2014) Decahedral TiO2 with Exposed Facets: Synthesis, Properties, Photoactivity and Applications. Applied Catalysis B: Environmental, 156-157, 213-235.
http://dx.doi.org/10.1016/j.apcatb.2014.03.019
[67]  Sun, S., Song, X., Sun, Y., Deng, D. and Yang, Z. (2012) The Crystal-Facet-Dependent Effect of Polyhedral Cu2O Microcrystals on Photocatalytic Activity. Catalysis Science & Technology, 2, 925-930.
http://dx.doi.org/10.1039/c2cy00530a
[68]  Ho, J.Y. and Huang, M.H. (2009) Synthesis of Submicrometer-Sized Cu2O Crystals with Morphological Evolution from Cubic to Hexapod Structures and Their Comparative Photocatalytic Activity. Journal of Physical Chemistry C, 113, 14159-14164.
http://dx.doi.org/10.1021/jp903928p
[69]  Huang, W.C., Lyu, L.M., Yang, Y.C. and Huang, M.H. (2012) Synthesis of Cu2O Nanocrystals from Cubic to Rhombic Dodecahedral Structures and Their Comparative Photocatalytic Activity. Journal of the American Chemical Society, 134, 1261-1267.
http://dx.doi.org/10.1021/ja209662v
[70]  Yang, Y.C., et al. (2014) Facet-Dependent Optical Properties of Polyhedral Au-Cu2O Core-Shell Nanocrystals. Nanoscale, 6, 4316-4324.
http://dx.doi.org/10.1039/c3nr06293g
[71]  Wang, L., et al. (2014) Designing p-Type Semiconductor-Metal Hybrid Structures for Improved Photocatalysis. Angewandte Chemie International Edition, 53, 5107-5111.
[72]  Xing, M., et al. (2013) Enhanced Photocatalysis by Au Nanoparticle Loading on TiO2 Single-Crystal (001) and (110) Facets. The Journal of Physical Chemistry Letters, 4, 3910-3917.
[73]  Dong, M., Zhang, J. and Yu, J. (2015) Effect of Effective Mass and Spontaneous Polarization on Photocatalytic Activity of Wurtzite and Zinc-Blende ZnS. APL Materials, 3, Article ID: 104404.
http://dx.doi.org/10.1063/1.4922860
[74]  Yu, W., Zhang, J. and Peng, T. (2016) New Insight into the Enhanced Photocatalytic Activity of N-, C- and S-Doped ZnO Photocatalysts. Applied Catalysis B: Environmental, 181, 220-227.
http://dx.doi.org/10.1016/j.apcatb.2015.07.031
[75]  Zhou, P., Yu, J. and Wang, Y. (2013) The New Understanding on Photocatalytic Mechanism of Visible-Light Response N-S Codoped Anatase TiO2 by First-Principles. Applied Catalysis B: Environmental, 142-143, 45-53.
http://dx.doi.org/10.1016/j.apcatb.2013.04.063
[76]  Yu, J., Zhou, P. and Li, Q. (2013) New Insight into the Enhanced Visible-Light Photocatalytic Activities of B-, C- and B/C-Doped Anatase TiO2 by First-Principles. Physical Chemistry Chemical Physics, 15, 12040-12047.
http://dx.doi.org/10.1039/c3cp44651d
[77]  Sang, Y., et al. (2015) From UV to Near-Infrared, WS2 Nanosheet: A Novel Photocatalyst for Full Solar Light Spectrum Photodegradation. Advanced Materials, 27, 363-369.
http://dx.doi.org/10.1002/adma.201403264
[78]  King, L.A., Zhao, W., Chhowalla, M., Riley, D.J. and Eda, G. (2013) Photoelectrochemical Properties of Chemically Exfoliated MoS2. Journal of Materials Chemistry A, 1, 8935-8941.
http://dx.doi.org/10.1039/c3ta11633f
[79]  Xi, J., Zhao, T., Wang, D. and Shuai, Z. (2014) Tunable Electronic Properties of Two-Dimensional Transition Metal Dichalcogenide Alloys: A First-Principles Prediction. The Journal of Physical Chemistry Letters, 5, 285-291.
http://dx.doi.org/10.1021/jz402375s
[80]  Faraji, M., et al. (2015) Band Engineering and Charge Separation in the Mo1?xWxS2/TiO2 Heterostructure by Alloying: First Principle Prediction. RSC Advances, 5, 28460-28466.
http://dx.doi.org/10.1039/C5RA00330J

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133