The use of Statistical Hypothesis Testing procedure to determine type I and type II errors was linked to the measurement of sensitivity and specificity in clinical trial test and experimental pathogen detection techniques. A theoretical analysis of establishing these types of errors was made and compared to determination of False Positive, False Negative, True Positive and True Negative. Experimental laboratory detection methods used to detect Cryptosporidium spp. were used to highlight the relationship between hypothesis testing, sensitivity, specificity and predicted values. The study finds that, sensitivity and specificity for the two laboratory methods used for Cryptosporidium detection were low hence lowering the probability of detecting a “false null hypothesis” for the presence of cryptosporidium in the water samples using either Microscopic or PCR. Nevertheless, both procedures for cryptosporidium detection had higher “true negatives” increasing its probability of failing to reject a “true null hypothesis” with specificity of 1.00 for both Microscopic and PCR laboratory detection methods.
References
[1]
Bennet, M.B. (1972) On Comparisons of Sensitivity, Specificity and Predictive Value of a Number of Diagnostic Procedures. Biometrics, 28, 793-800. http://dx.doi.org/10.2307/2528763
[2]
Gaddis, G.M. and Gaddis, M.L. (1990) An Introduction to Biostatistics Part 3: Sensitivity, Specificity, Predictive Value and Hypothesis Testing. Annals of Emergency Medicine, 19, 591-597.
http://dx.doi.org/10.1016/S0196-0644(05)82198-5
[3]
Sharma, D., Yadav, U.B. and Sharma, P. (2009) The Concept of Sensitivity and Specificity in Relation to Two Types of Errors and Its Application in Medical Research. Journal of Reliability and Statistical Studies, 2, 53-58.
[4]
Kendall, M., Stuart, A., Ord, K.J. and Arnold, S. (1999) Kendall’s Advanced Theory of Statistics: Volume 2A Classical Inference and the Linear Model (Kendall’s Library of Statistics). 6th Edition, Hodder Arnold Publication, London.
[5]
Duhain, G. (2011) Occurence of Cryptosporidium spp in South African Irrigation Waters and Survival of Cryptosporidium parvum during Vegetable Processing. University of Pretoria, South Africa.
[6]
Medema, G., Bahar, M. and Schets, F. (1997) Survival of Cryptosporidium parvum Escherichia coli, Faecal enterococci and Clostridium perfringens in River Water: Influence of Temperature and Autochthonous Microorganisms. Water Science & Technology, 35, 249-252. http://dx.doi.org/10.1016/S0273-1223(97)00267-9
[7]
Langkjaer, R.B., Vigre, H., Enemark, H.L. and Maddox-Hyttel, C. (2007) Molecular and Phylogenetic Characterization of Cryptosporidium and Giardia from Pigs and Cattle in Denmark. Parasitology, 134, 339-350.
http://dx.doi.org/10.1017/S0031182006001533
[8]
Morgan, U.M., Pallant, L., Dwyer, B.W., Forbes, D.A., Rich, G. and Thompson, R.C. (1998) Comparison of PCR and Microscopy for Detection of Cryptosporidium parvum in Human Fecal Specimens: Clinical Trial. Journal of Clinical Microbiology, 36, 995-998.
[9]
Kaushik, K., Khurana, S., Wanchu, A. and Malla, N. (2008) Evaluation of Staining Techniques, Antigen Detection and Nested PCR for the Diagnosis of Cryptosporidiosis in HIV Seropositive and Seronegative Patients. Acta Tropica, 107, 1-7. http://dx.doi.org/10.1016/j.actatropica.2008.02.007
[10]
Omoruyi, B.E., Nwodo, U.U., Udem, C.S. and Okonkwo, F.O. (2014) Comparative Diagnostic Techniques for Cryptosporidium Infection. Molecules, 19, 2674-2683. http://dx.doi.org/10.3390/molecules19022674
[11]
Selvakumar, N., Rahman, F., Rajasekaran, S., Narayanan, P.R. and Frieden, T.R. (2002) Inefficiency of 0.3% Carbol Fuchsin in Ziehl-Neelsen Staining for Detecting Acid-Fast Bacilli. Journal of Clinical Microbiology, 40, 3041-3043.
http://dx.doi.org/10.1128/JCM.40.8.3041-3043.2002
[12]
Chalmers, R.M., Campbell, B.M., Crouch, N., Charlett, A. and Davies, A.P. (2011) Comparison of Diagnostic Sensitivity and Specificity of Seven Cryptosporidium Assays Used in the UK. Journal of Medical Microbiology, 60, 1598- 1604. http://dx.doi.org/10.1099/jmm.0.034181-0
[13]
Shimelis, T. and Tadesse, E. (2014) Performance Evaluation of Point-of-Care Test for Detection of Cryptosporidium Stool Antigen in Children and HIV Infected Adults. Parasit. Vectors, 7, 227.
http://dx.doi.org/10.1186/1756-3305-7-227
[14]
Marques, F.R., Cardoso, L.V., Cavasini, C.E., De Almeida, M.C., Bassi, N.A., De Almeida, M.T.G., Rossit, A.R.B. and Machado, R.L.D. (2005) Performance of an Immunoenzymatic Assay for Cryptosporidium Diagnosis of Fecal Samples. Brazilian Journal of Infectious Diseases, 9, 3-5. http://dx.doi.org/10.1590/S1413-86702005000100002
[15]
Tahvildar-Biderouni, F. and Salehi, N. (2014) Detection of Cryptosporidium Infection by Modified Ziehl-Neelsen and PCR Methods in Children with Diarrheal Samples in Pediatric Hospitals in Tehran. Gastroenterology and Hepatology from Bed to Bench, 7, 125-130.
[16]
Shea, Y.R., Davis, J.L., Huang, L., Kovacs, J.A., Masur, H., Mulindwa, F., Opus, S., Chow, Y. and Murray, P.R. (2009) High Sensitivity and Specificity of Acid-Fast Microscopy for Diagnosis of Pulmonary Tuberculosis in an African Population with a High Prevalence of Human Immunodeficiency Virus. Journal of Clinical Microbiology, 47, 1553-1555.
http://dx.doi.org/10.1128/JCM.00348-09