In this paper, we compute Atom-bond connectivity index, Fourth atom-bond connectivity index, Sum connectivity index, Randic connectivity index, Geometric-arithmetic connectivity index and Fifth geometric-arithmetic connectivity index of Dutch windmill graph.
References
[1]
Estrada, E., Torres, L., Rodriguez, L. and Gutman, I. (1998) An Atom-Bond Connectivity Index: Modelling the Enthalpy of Formation of Alkanes. Indian Journal of Chemistry, 37A, 849-855.
[2]
Chen, J., Liu, J. and Guo, X. (2012) Some Upper Bounds for the Atom-Bond Connectivity Index of Graphs. Applied Mathematics Letters, 25, 1077-1081. http://dx.doi.org/10.1016/j.aml.2012.03.021
[3]
Chen, J. and Guo, X. (2012) The Atom-Bond Connectivity Index of Chemical Bicyclic Graphs. Applied Mathematics— A Journal of Chinese Universities, 27, 243-252. http://dx.doi.org/10.1007/s11766-012-2756-4
[4]
Xing, R., Zhou, B. and Dong, F. (2011) On Atom-Bond Connectivity Index of Connected Graphs. Discrete Applied Mathematics, 159, 1617-1630. http://dx.doi.org/10.1016/j.dam.2011.06.004
[5]
Furtula, B., Gravoc, A. and Vukicevic, D. (2009) Atom-Bond Connectivity Index of Trees. Discrete Applied Mathematics, 157, 2828-2835. http://dx.doi.org/10.1016/j.dam.2009.03.004
[6]
Gutman, I., Furtula, B. and Ivanovic, M. (2012) Notes on Trees with Minimal Atom-Bond Connectivity Index. MATCH Communications in Mathematical and in Computer Chemistry, 67, 467-482.
[7]
Xing, R., Zhou, B. and Du, Z. (2010) Further Results on Atom-Bond Connectivity Index of Trees. Discrete Applied Mathematics, 157, 1536-1545. http://dx.doi.org/10.1016/j.dam.2010.05.015
[8]
Xing, R. and Zhou, B. (2012) Extremal Trees with Fixed Degree Sequence for Atom-Bond Connectivity Index. FILOMAT, 26, 683-688. http://dx.doi.org/10.2298/FIL1204683X
[9]
Ghorbani, M. and Hosseinzadeh, M.A. (2010) Computing ABC4 Index of Nanostar Dendrimers. Optoelectronics and Advanced Materials: Rapid Communications, 4, 1419-1422.
[10]
Farahani, M.R. (2013) Computing Fourth Atom-Bond Connectivity Index of V-Phenylenic Nanotubes and Nanotori. Acta Chimica Slovenica, 60, 429-432.
[11]
Farahani, M.R. (2013) On the Fourth Atom-Bond Connectivity Index of Armchair Polyhex Nanotube. Proceedings of the Romanian Academy—Series B, 15, 3-6.
[12]
Randic, M. (1975) On Characterization of Molecular Branching. Journal of the American Chemical Society, 97, 6609-6615. http://dx.doi.org/10.1021/ja00856a001
[13]
Zhou, B. and Xing, R. (2011) On Atom-Bond Connectivity Index. Zeitschrift für Naturforschung, 66a, 61-66. http://dx.doi.org/10.5560/ZNA.2011.66a0061
[14]
Zhou, B. and Trinajstic, N. (2009) On a Novel Connectivity Index. Journal of Mathematical Chemistry, 46, 1252-1270. http://dx.doi.org/10.1007/s10910-008-9515-z
[15]
Zhou, B. and Trinajstic, N. (2010) On General Sum-Connectivity Index. Journal of Mathematical Chemistry, 47, 210-218. http://dx.doi.org/10.1007/s10910-009-9542-4
[16]
Vukicevic, D. and Furtula, B. (2009) Topological Index Based on the Ratios of Geometrical and Arithmetical Means of End-Vertex Degrees of Edges. Journal of Mathematical Chemistry, 46, 1369-1376. http://dx.doi.org/10.1007/s10910-009-9520-x
[17]
Chen, S. and Liu, W. (2010) The Geometric-Arithemtic Index of Nanotubes. Journal of Computational and Theoretical Nanoscience, 7, 1993-1995. http://dx.doi.org/10.1166/jctn.2010.1573
[18]
Das, K.C. and Trinajstic, N. (2010) Comparision between First Geometric-Arithmetic Index and Atom-Bond Connectivity Index. Chemical Physics Letters, 497, 149-151. http://dx.doi.org/10.1016/j.cplett.2010.07.097
[19]
Xiao, L., Chen, S., Guo, Z. and Chen, Q. (2010) The Geometric-Arithmetic Index of Benzenoidsystems and Phenylenes. International Journal of Contemporary Mathematical Sciences, 5, 2225-2230.
[20]
Graovac, A.. Ghorbani, M. and Hosseinzadeh, M.A. (2011) Computing Fifth Geometric-Arithmetic Index for Nanostar Dendrimers. Journal of Mahematical Nanoscience, 1, 33-42.