|
Pure Mathematics 2016
关于任意随机序列加权和的强收敛性
|
Abstract:
[1] | 格涅坚科, 科尔莫哥洛夫. 相互独立随机变数之和的极限分布[M]. 北京: 科学出版社, 1955. |
[2] | 佩特罗夫. 独立随机变量之和的极限定理[M]. 合肥: 中国科学技术大学出版社, 1991. |
[3] | Rosalsky, A. and Stoica, G. (2010) On the Strong Law of Large Numbers for Identically Distributed Random Variables Irrespective of their Joint Distributions. Statistics & Probability Letters, 80,1265-1270.
http://dx.doi.org/10.1016/j.spl.2010.04.005 |
[4] | 杨卫国, 刘文. 关于任意随机序列的强收敛性[J]. 数学物理学报, 2003, 23(5): 565-572. |
[5] | 汪忠志. 关于M值随机序列的一个普遍成立的强大数定理[J]. 纯粹数学与应用数学, 2004, 20(4): 327-333. |
[6] | Korchevsky, V.M. (2011) On the Strong Law of Large Numbers for Sequences of Random Variables without the Independence Condition. Vestnik St. Petersburg University: Mathematics, 44, 268-271.
http://dx.doi.org/10.3103/S1063454111040066 |
[7] | 汪忠志, 徐付霞. 关于B值随机元序列的强收敛性[J]. 纯粹数学与应用数学, 2002, 18(2): 187-190. |
[8] | 张丽娜. 任意B值随机变量序列的强收敛性[J]. 数学杂志, 2002, 22(3): 297-300. |
[9] | Sung, S.H. (1998) SLIN for Weighted Sums of Stochastically Dominated Pairwish Independent Random Variables. Communications of the Korean Mathematical Society, 13, 377-384. |
[10] | 刘京军, 甘师信. 随机变量序列加权和的强收敛性[J]. 数学学报, 1998, 41(4): 823-832. |