We assessed incidence and
outcomes of patients with ventilator-associated respiratory infections (VARI)
due to tracheobronchitis (VAT) and pneumonia (VAP), including length of
intensive care unit (ICU) stay and ventilator days. We also examined pathogens,
rate of progression from VAT to VAP, and impact of antibiotic therapy for VAT.
Data analysis included 234 patients, 100 patients (43%) had at least moderate
(+++) bacterial growth in their semi-quantitative endotracheal aspirate
(SQ-ETA) cultures. VAT and VAP were each diagnosed in 34 (15%) patients.Staphylococcus aureuswas the most common pathogen isolated
and had the highest rate of progression from VAT to VAP. Seven (21%) of the 34
patients were diagnosed with VAT that later progressed to VAP in averaged 3
days. Patients diagnosed with VAT had significantly more ventilator days (9 vs
6,p< 0.001), ICU days (17 vs 11,p< 0.001) and hospital days (22 vs
17,p< 0.001). No significant difference
was observed in the clinical outcomes of the 25 VAT patients with timely,
appropriate antibiotics compared to the 9 VAT patients who did not receive
timely appropriate antibiotics. VAT was a risk factor for increased ventilator
days, longer length of ICU and hospital stay. The time window from VAT to VAP
allowed physicians to identify the pathogens and sensitivity profile needed to
treat VAT with
References
[1]
ATS Board of Directors and the IDSA Guideline Committee (2005) Guidelines for the Management of Adults with Hospital-Acquired, Ventilator-Associated, and Healthcare-Associated Pneumonia. American Journal of Respiratory and Critical Care Medicine, 171, 388-416. http://dx.doi.org/10.1164/rccm.200405-644ST
[2]
Chastre, J. and Fagon, J.Y. (2002) Ventilator-Associated Pneumonia. American Journal of Respiratory and Critical Care Medicine, 165, 867-903. http://dx.doi.org/10.1164/ajrccm.165.7.2105078
[3]
Craven, D.E., Chroneou, A., Zias, N. and Hjalmarson, K.I. (2009) Ventilator-Associated Tracheobronchitis: The Impact of Targeted Antibiotic Therapy on Patient Outcomes. Chest, 135, 521-528.
http://dx.doi.org/10.1378/chest.08-1617
[4]
Craven, D.E., Hudcova, J. and Lei, Y. (2011) Diagnosis of Ventilator-Associated Respiratory Infections (VARI): Microbiologic Clues for Tracheobronchitis (VAT) and Pneumonia (VAP). Clinics in Chest Medicine, 32, 547-357.
http://dx.doi.org/10.1016/j.ccm.2011.06.001
[5]
Craven, D.E., Hudcova, J. and Rashid, J. (2015) Antibiotic Therapy for Ventilator-Associated Tracheobronchitis: A Standard of Care to Reduce Pneumonia, Morbidity and Costs? Current Opinion in Pulmonary Medicine, 21, 250-259.
http://dx.doi.org/10.1097/MCP.0000000000000158
[6]
Craven, D.E., Lei, Y., Ruthazer, R., Sarwar, A. and Hudcova, J. (2013) Incidence and Outcomes of Ventilator-Associated Tracheobronchitis and Pneumonia. American Journal of Medicine, 126, 542-549.
http://dx.doi.org/10.1016/j.amjmed.2012.12.012
[7]
Dallas, J., Skrupky, L., Abebe, N., Boyle, W.A. and Kollef, M.H. (2011) Ventilator-Associated Tracheobronchitis in a Mixed Surgical and Medical ICU Population. Chest, 139, 513-518. http://dx.doi.org/10.1378/chest.10-1336
[8]
Karvouniaris, M., Makris, D., Manoulakas, E., Zygoulis, P., Mantzarlis, K., Triantaris, A., Chatzi, M. and Zakynthinos, E. (2013) Ventilator-Associated Tracheobronchitis Increases the Length of Intensive Care Unit Stay. Infection Control & Hospital Epidemiology, 34, 800-808. http://dx.doi.org/10.1086/671274
[9]
Niederman, M.S. (2005) The Clinical Diagnosis of Ventilator-Associated Pneumonia. Respiratory Care, 50, 788-796.
http://dx.doi.org/10.1201/b14114-9
[10]
Nseir, S., Ader, F. and Marquette, C.H. (2009) Nosocomial Tracheobronchitis. Current Opinion in Infectious Diseases, 22, 148-153. http://dx.doi.org/10.1097/QCO.0b013e3283229fdb
[11]
Palmer, L.B. (2009) Ventilator-Associated Infection. Current Opinion in Pulmonary Medicine, 15, 230-235.
http://dx.doi.org/10.1097/MCP.0b013e3283292650
[12]
Torres, A. and Carlet, J. (2001) Ventilator-Associated Pneumonia. European Task Force on Ventilator-Associated Pneumonia. European Respiratory Society, 17, 1034-1045. http://dx.doi.org/10.1183/09031936.01.17510340
[13]
Craven, D.E., Hudcova, J., Craven, K.A., Scopa, C. and Lei, Y. (2014) Antibiotic Treatment of Ventilator-Associated Tracheobronchitis: To Treat or Not to Treat? Current Opinion in Critical Care, 20, 532-541.
http://dx.doi.org/10.1097/MCC.0000000000000130
[14]
Nseir, S., Di Pompeo, C., Pronnier, P., Beague, S., Onimus, T., Saulnier, F., Grandbastien, B., Mathieu, D., Delvallez-Roussel, M. and Durocher, A. (2002) Nosocomial Tracheobronchitis in Mechanically Ventilated Patients: Incidence, Aetiology and Outcome. European Respiratory Society, 20, 1483-1489.
http://dx.doi.org/10.1183/09031936.02.00012902
[15]
Fagon, J.Y. (2006) Diagnosis and Treatment of Ventilator-Associated Pneumonia: Fiberoptic Bronchoscopy with Bronchoalveolar Lavage Is Essential. Seminars in Respiratory and Critical Care Medicine, 27, 34-44.
http://dx.doi.org/10.1055/s-2006-933672
[16]
Rea-Neto, A., Youssef, N.C., Tuche, F., Brunkhorst, F., Ranieri, V.M., Reinhart, K. and Sakr, Y. (2008) Diagnosis of Ventilator-Associated Pneumonia: A Systematic Review of the Literature. Critical Care, 12, R56.
http://dx.doi.org/10.1186/cc6877
[17]
Shorr, A.F., Sherner, J.H., Jackson, W.L. and Kollef, M.H. (2005) Invasive Approaches to the Diagnosis of Ventilator-Associated Pneumonia: A Meta-Analysis. Critical Care Medicine, 33, 46-53.
http://dx.doi.org/10.1097/01.CCM.0000149852.32599.31
Nseir, S., Di Pompeo, C., Soubrier, S., Delour, P., Onimus, T., Saulnier, F. and Durocher, A. (2004) Outcomes of Ventilated COPD Patients with Nosocomial Tracheobronchitis: A Case-Control Study. Infection, 32, 210-216.
http://dx.doi.org/10.1007/s15010-004-3167-0
[20]
Nseir, S., Favory, R., Jozefowicz, E., Decamps, F., Dewavrin, F., Brunin, G., Di Pompeo, C., Mathieu, D. and Durocher, A. (2008) Antimicrobial Treatment for Ventilator-Associated Tracheobronchitis: A Randomized, Controlled, Multicenter Study. Critical Care, 12, R62. http://dx.doi.org/10.1186/cc6890
[21]
Lowy, F.D. (1998) Staphylococcus aureus Infections. The New England Journal of Medicine, 339, 520-532.
http://dx.doi.org/10.1056/NEJM199808203390806
[22]
Stulik, L., Malafa, S., Hudcova, J., Rouha, H., Henics, B.Z., Craven, D.E., Sonnevend, A.M. and Nagy, E. (2014) Alpha-Hemolysin Activity of Methicillin-Susceptible Staphylococcus aureus Predicts Ventilator-Associated Pneumonia. American Journal of Respiratory and Critical Care Medicine, 190, 1139-1148.
http://dx.doi.org/10.1164/rccm.201406-1012OC
[23]
Nseir, S., Di Pompeo, C., Soubrier, S., Lenci, H., Delour, P., Onimus, T., Saulnier, F., Mathieu, D. and Durocher, A. (2005) Effect of Ventilator-Associated Tracheobronchitis on Outcome in Patients without Chronic Respiratory Failure: A Case-Control Study. Critical Care, 9, R238. http://dx.doi.org/10.1186/cc3508
[24]
Crouch Brewer, S., Wunderink, R.G., Jones, C.B. and Leeper Jr., K.V. (1996) Ventilator-Associated Pneumonia Due to Pseudomonas aeruginosa. Chest, 109, 1019-1029. http://dx.doi.org/10.1378/chest.109.4.1019
[25]
Nseir, S., Deplanque, X., Di Pompeo, C., Diarra, M., Roussel-Delvallez, M. and Durocher, A. (2008) Risk Factors for Relapse of Ventilator-Associated Pneumonia Related to Nonfermenting Gram Negative Bacilli: A Case-Control Study. Journal of Infection, 56, 319-325. http://dx.doi.org/10.1016/j.jinf.2008.02.012
[26]
Planquette, B., Timsit, J.F., Misset, B.Y., Schwebel, C., Azoulay, E., Adrie, C., Vesin, A., Jamali, S., Zahar, J.R., Allaouchiche, B., Souweine, B., Darmon, M., Dumenil, A.S., Goldgran-Toledano, D., Mourvillier, B.H. and Bedos, J.P. (2013) Pseudomonas aeruginosa ventilator-associated pneumonia. Predictive factors of Treatment Failure. American Journal of Respiratory and Critical Care Medicine, 188, 69-76. http://dx.doi.org/10.1164/rccm.201210-1897OC
[27]
Sawa, T. (2014) The Molecular Mechanism of Acute Lung Injury Caused by Pseudomonas aeruginosa: From Bacterial Pathogenesis to Host Response. Journal of Intensive Care, 2, 10. http://dx.doi.org/10.1186/2052-0492-2-10
[28]
Van Delden, C. and Iglewski, B.H. (1998) Cell-to-Cell Signaling and Pseudomonas aeruginosa Infections. Emerging Infectious Diseases, 4, 551-560. http://dx.doi.org/10.3201/eid0404.980405
[29]
Agrafiotis, M., Siempos, I.I. and Falagas, M.E. (2010) Frequency, Prevention, Outcome and Treatment of Ventilator-Associated Tracheobronchitis: Systematic Review and Meta-Analysis. Respiratory Medicine, 104, 325-336.
http://dx.doi.org/10.1016/j.rmed.2009.09.001
[30]
Palmer, L.B., Smaldone, G.C., Chen, J.J., Baram, D., Duan, T., Monteforte, M., Varela, M., Tempone, A.K., O’Riordan, T., Daroowalla, F. and Richman, P. (2008) Aerosolized Antibiotics and Ventilator-Associated Tracheobronchitis in the Intensive Care Unit. Critical Care Medicine, 36, 2008-2013.
http://dx.doi.org/10.1097/CCM.0b013e31817c0f9e
[31]
Nseir, S., Martin-Loeches, I., Makris, D., Jaillette, E., Karvouniaris, M., Valles, J., Zakynthinos, E. and Artigas, A. (2014) Impact of Appropriate Antimicrobial Treatment on Transition from Ventilator-Associated Tracheobronchitis to Ventilator-Associated Pneumonia. Critical Care, 18, R129. http://dx.doi.org/10.1186/cc13940
[32]
Montgomery, A.B., Vallance, S., Abuan, T., Tservistas, M. and Davies, A. (2014) A Randomized Double-Blind Placebo-Controlled Dose-Escalation Phase 1 Study of Aerosolized Amikacin and Fosfomycin Delivered via the PARI Investigational eFlow Inline Nebulizer System in Mechanically Ventilated Patients. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 27, 441-448.
[33]
Burnham, C.A., Frobel, R.A., Herrera, M.L. and Wickes, B.L. (2014) Rapid Ertapenem Susceptibility Testing and Klebsiella pneumoniae Carbapenemase Phenotype Detection in Klebsiella pneumoniae Isolates by Use of Automated Microscopy of Immobilized Live Bacterial Cells. Journal of Clinical Microbiology, 52, 982-986.
http://dx.doi.org/10.1128/JCM.03255-13
[34]
Laffler, T.G., Cummins, L.L., McClain, C.M., Quinn, C.D., Toro, M.A., Carolan, H.E., Toleno, D.M., Rounds, M.A., Eshoo, M.W., Stratton, C.W., Sampath, R., Blyn, L.B., Ecker, D.J. and Tang, Y.W. (2013) Enhanced Diagnostic Yields of Bacteremia and Candidemia in Blood Specimens by PCR-Electrospray Ionization Mass Spectrometry. Journal of Clinical Microbiology, 51, 3535-3541. http://dx.doi.org/10.1128/JCM.00876-13