The Paulie’s principle is used for development of the orbital-free (OF) version of the density functional theory. On the example of the three-atomic clusters, Al3, Si3, and C3, it is shown that the OF approach may lead to equilibrium configurations of atomic systems with both the metallic and covalent bonding. The equilibrium interatomic distances, interbonding angles and binding energies are found in good accordance with the known data. Results will be useful for developing of theoretical study of huge molecules and nanoparticles.
References
[1]
Wang Y.A. and Carter E.A. (2001) Orbital-Free Kinetic-Energy Density Functional Theory. In: Schwartz, S.D., Ed., Progress in Theoretical Chemistry and Physics, Kluwer, Dordrecht, 117 p.
[2]
Chen, H.J. and. Zhou, A.H. (2008) Orbital-Free Density Functional Theory for Molecular Structure Calculations. Numerical Mathematics: Theory, Methods and Applications, 1, 1-28.
[3]
Zhou, B.J., Ligneres, V.L. and Carter, E.A. (2005) Improving the Orbital-Free Density Functional Theory Description of Covalent Materials. Journal Chemical Physics, 122, Article ID: 044103. http://dx.doi.org/10.1063/1.1834563
[4]
Karasiev, V.V. and Trickey, S.B. (2012) Issues and Challenges in Orbital-Free Density Functional Calculations. Computational Physics Communications, 183, 2519-2527. http://dx.doi.org/10.1016/j.cpc.2012.06.016
[5]
Karasiev, V.V., Chakraborty, D., Shukruto, O.A. and Trickey, S.B. (2013) Nonempirical Generalized Gradient Approximation Free-Energy Functional for Orbital-Free Simulations. Physical Review B, 88, 161108-161113(R).
http://dx.doi.org/10.1103/PhysRevB.88.161108
[6]
Wesolowski, T.A. (2005) Approximating the Kinetic Energy Functional Ts[ρ]: Lessons from Four-Electron Systems. Molecular Physics, 103, 1165-1167. http://dx.doi.org/10.1080/00268970512331339341
[7]
Hung, L. and Carter, E.A. (2009) Accurate Simulations of Metals at the Mesoscale: Explicit Treatment of 1 Million Atoms with Quantum Mechanics. Chemical Physics Letters, 475, 163-170.
http://dx.doi.org/10.1016/j.cplett.2009.04.059
[8]
Xia, J.C., Huang, C., Shin, I. and Carter, E.A. (2012) Can Orbital-Free Density Functional Theory Simulate Molecules? The Journal of Chemical Physics, 136, Article ID: 084102(13).
[9]
Lehtom?ki, J., Makkonen, I., Caro, M.A., Harju, A. and Lopez-Acevedo, O. (2014) Orbital-Free Density Functional Theory Implementation with the Projector Augmented Wave Method. Journal Chemical Physics, 141, Article ID: 234102(7).
[10]
Kohn, W. and Sham, J.L. (1965) Self-Consistent Equations including Exchange and Correlation Effects. Physical Review, 140, A1133-A1138. http://dx.doi.org/10.1103/physrev.140.a1133
[11]
Hohenbeg, H. and Kohn, W. (1964) Inhomogeneous Electron Gas. Physical Review, 136, B864-B871.
http://dx.doi.org/10.1103/PhysRev.136.B864
[12]
Carling, K.M. and Carter, E.A. (2003) Orbital-Free Density Functional Theory Calculations of the Properties of Al, Mg and Al-Mg Crystalline Phases. Modeling and Simulation in Materials Science and Engineering, 11, 339-348.
http://dx.doi.org/10.1088/0965-0393/11/3/307
[13]
Raghavachari, K. and Logovinsky, V. (1985) Structure and Bonding in Small Silicon Clusters. Physical Review Letters, 55, 2853-2856. http://dx.doi.org/10.1103/PhysRevLett.55.2853
[14]
Van Orden, A. and Saykally, R.J. (1998) Small Carbon Clusters: Spectroscopy, Structure, and Energetics. Chemical Review, 98, 2313-2357. http://dx.doi.org/10.1021/cr970086n
[15]
Chuang, F.-C., Wang, C.Z. and Ho, K.H. (2006) Structure of Neutral Aluminum Clusters Aln (2 ≤ n ≤ 23): Genetic Algorithm Tight-Binding Calculations. Physical Review B, 73, Article ID: 125431(7).
[16]
Zavodinsky, V.G. and Gorkusha, O.A. (2014) Quantum-Mechanical Modeling without Wave Functions. Physics of the Solid States, 56, 2329-2335. http://dx.doi.org/10.1134/S1063783414110316
[17]
Zavodinsky, V.G. and Gorkusha, O.A. (2015) New Orbital-Free Approach for Density Functional Modeling of Large Molecules and Nanoparticles. Modeling and Numerical Simulation of Material Science, 5, 39-46.
http://dx.doi.org/10.4236/mnsms.2015.52004
[18]
Fuchs, M. and Scheffler, M. (1999) Ab Initio Pseudopotentials for Electronic Structure Calculations of Poly-Atomic Systems Using Density-Functional Theory. Computational Physics Communications, 119, 67-98.
http://dx.doi.org/10.1016/S0010-4655(98)00201-X
[19]
Tomanek, D. and Schluter, M.A. (1987) Structure and Bonding of Small Semiconductor Clusters. Physical Review B, 36, 1208-1217. http://dx.doi.org/10.1103/PhysRevB.36.1208
[20]
Mukhtarov, A.P., Normurodov, A.B., Sulaymonov, N.T. and Umarova, F.T. (2015) Charge States of Bare Silicon Clusters up to Si8 by Non-Conventional Tight-Binding Method. Journal of Nano- and Electronic Physics, 7, Article ID: 01012(7).
[21]
McCarthy, M.C. and Thaddeus, P. (2003) Rotational Spectrum and Structure of Si3. Physical Review Letters, 90, Article ID: 213003(4).
[22]
Liu, B., Lu, Z.Y., Pan, B., Wang, C.Z., Ho, K.M., Shvartsburg, A.A. and Jarrold, M.F. (1998) Ionization of Medium-Sized Silicon Clusters and the geometries of the Cations. Journal of Chemical Physics, 109, 9401-9409.
http://dx.doi.org/10.1063/1.477601
[23]
Raghavachari, K. and Rohlfing, C.M. (1988) Bonding and Stabilities of Small Silicon Clusters: A Theoretical Study of Si7-Si10. Journal of Chemical Physics, 89, 2219-2234. http://dx.doi.org/10.1063/1.455065
[24]
Matrínez, A. and Vela, A. (1994) Stability of Charged Aluminum Clusters. Physical Review B, 49, Article ID: 17464(4).
[25]
Tse, J.S. (1988) Electronic Structure of the Dimer and Trimer of Aluminium. Theoretical Chemistry (Journal of Molecular Structures), 165, 21-24.
[26]
Karton, A., Tarnopolsky, A. and Martin, J.M.L. (2009) Atomization Energies of the Carbon Clusters Cn (n = 2 - 10) Revisited by Means of W4 Theory as Well as Density Functional, Gn, and CBS Methods. International Journal of Interface between Chemistry and Physics, 107, 977-1003. http://dx.doi.org/10.1080/00268970802708959
[27]
Afshar, M., Babaei, M. and Kordbacheh, A.H. (2014) First Principles Study on Structural and Magnetic Properties of Small and Pure Carbon Clusters (Cn, n = 2 - 12). Journal of Theoretical and Applied Physics, 8, 103-108.
http://dx.doi.org/10.1007/s40094-014-0136-6
[28]
Beckstedte, M., Kley, A., Neugebauer, J. and Scheffler, M. (1997) Density Functional Theory Calculation for Poly-Atomic Systems: Electronic Structure, Static and Elastic Properties and ab Initio Molecular Dynamics. Computational Physics Communications, 107, 187-205. http://dx.doi.org/10.1016/S0010-4655(97)00117-3