全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Einstein Rosen Mesonic Perfect Fluid Cosmological Model with Time Dependent Λ-Term

DOI: 10.4236/ijaa.2016.61007, PP. 99-104

Keywords: General Relativity, Perfect Fluid, Time-Dependent Term Λ

Full-Text   Cite this paper   Add to My Lib

Abstract:

Mesonic perfect fluid solutions are found in general relativity with the aid of Einstein’s Rosen cylindrically symmetric space time. A static vacuum model and a non-static cosmological model corresponding to perfect fluid are investigated. The cosmological term Λ is found to be a decreasing function of time which is supported by the result found from recent type Ia Supernovae observations. The various physical and geometrical features of the model are discussed.

References

[1]  Lau, Y.K. (1985) The Large Number Hypothesis and Einstein’s Theory of Gravitation. Australian Journal of Physics, 38, 547-553.
http://dx.doi.org/10.1071/PH850547
[2]  Dersarkissian, M. (1985) The Cosmological Constant (Λ) as a Possible Primordial Link to Einstein’s Theory of Gravity, the Properties of Hadronic Matter and the Problem of Creation. II Nuovo Cimento B (1971-1996), 88, 29-42.
http://dx.doi.org/10.1007/BF02729027
[3]  Patel, L.K. (1975) Plane-Symmetric Solution of Einstein’s Field Equations. Tensor, 29, 237.
[4]  Singh, R.T. and Deo, S. (1986) Zero Mass Scalar Field Interactions in the Robertson-Walker Universe. Acta Physica Hungarica, 59, 321-325.
[5]  Tsagas, C.G. and Maartens, R. (2000) Cosmological Perturbations on a Magnetized Bianchi I Background. Classical and Quantum Gravity, 17, 2215-2242
http://dx.doi.org/10.1088/0264-9381/17/11/305
[6]  Sahni, V. and Starobinsky, A. (2000) The Case for a Positive Cosmological Λ-Term. International Journal of Modern Physics D, 9, 373-443.
http://dx.doi.org/10.1142/S0218271800000542
[7]  Ratra, B. and Peebles, P.J.E. (2003) The Cosmological Constant and Dark Energy. Reviews of Modern Physics, 75, 559-606.
http://dx.doi.org/10.1103/RevModPhys.75.559
[8]  Padmanabhan, T. (2003) Cosmological Constant—The Weight of the Vacuum. Physics Reports, 380, 235-320.
http://dx.doi.org/10.1016/S0370-1573(03)00120-0
[9]  Vishwakarma, R.G., Abdussattar and Beesham, A. (1999) LRS Bianchi Type-I Models with a Time-Dependent Cosmological “Constant”. Physical Review D, 60, Article ID: 063507.
http://dx.doi.org/10.1103/PhysRevD.60.063507
[10]  Vishwakarma, R.G. (2000) A Study of Angular Size Redshift Relation for Models in Which Lambda Decays as the Energy Density. Classical and Quantum Gravity, 17, 3833-3842.
[11]  Vishwakarma, R.G. (2001) Consequences on Variable Lambda Models from Distant Type Ia Supernovae and Compact Radio Sources. Classical and Quantum Gravity, 18, 1159-1172.
http://dx.doi.org/10.1088/0264-9381/18/7/301
[12]  Vishwakarma, R.G. (2001) Study of the Magnitude Redshift-Relation for Type Ia Supernovae in a Model Resulting from a Ricci-Symmetry. General Relativity and Gravitation, 33, 1973-1984.
http://dx.doi.org/10.1023/A:1013051026760
[13]  Vishwakarma, R.G. (2002) Consequences on Some Dark Energy Candidates from SN 1997ff. Monthly Notices of the Royal Astronomical Society, 331, 776-784.
http://dx.doi.org/10.1046/j.1365-8711.2002.05253.x
[14]  Vishwakarma, R.G. (2002) A Machian Model of Dark Energy. Classical and Quantum Gravity, 19, 4747-4752.
http://dx.doi.org/10.1088/0264-9381/19/18/309
[15]  Pradhan, A. and Pandey, P. (2005) Plane-Symmetric Inhomogeneous Magnetized Viscous Fluid Universe with a Variable Lambda. Czechoslovak Journal of Physics, 55, 749-764.
http://dx.doi.org/10.1007/s10582-005-0077-z
[16]  Pradhan, A., Khadekar, G.S. and Molaei, M.R. (2006) Higher Dimensional Dust Cosmological Implications of a Decay Law for a Lamda Term: Expression for Some Observable Quantities. International Journal of Modern Physics D, 15, 95-105.
http://dx.doi.org/10.1142/S0218271806007638
[17]  Sahu, R.C. and Panigrahi, U.K. (2003) Bianchi Type-I Vacuum Models in Modified Theory of General Relativity. Astrophysics and Space Science, 288, 499-508.
http://dx.doi.org/10.1023/b:astr.0000005123.68634.b8
[18]  Sahu, R.C. and Mohapatra, L.K. (2009) Plane Symmetric Inhomogeneous Cosmological Perfect Fluid Models Boundary. Bulletin of Calcutta Mathematical Society, 101, 497-502.
[19]  Mohanty, G., Sahu, S.K. and Sahoo, P.K. (2004) Mesonic Stiff Fluid Distribution in Bianchi Type Space-Times. Communications in Physics, 14, 84-89.
[20]  Mohanty, G. and Mishra, B. (2003) Scale Invariant Theory for Bianchi Type VIII and IX Space-Times with Perfect Fluid. Astrophysics and Space Science, 283, 67-74.
http://dx.doi.org/10.1023/A:1021272819809
[21]  Mishra, B. (2004) Non-Static Plane Symmetric Zeldovich Fluid Model in Scale Invariant Theory. Chinese Physics Letters, 21, 2359-2361.
http://dx.doi.org/10.1088/0256-307X/21/12/011
[22]  Adhav, K.S., Mete, V.G., Thakare, R.S. and Pund, A.M. (2011) Einstein-Rosen Universe with Wet Dark Fluid in General Relativity. International Journal of Theoretical Physics, 50, 164-170.
http://dx.doi.org/10.1007/s10773-010-0504-1
[23]  Katore, S.D., Shaik, A.Y., Sancheti, M.M. and Pawade, I.D. (2012) Einstein-Rosen Bulk Viscous Cosmological Solution with Zero Mass Scalar Field in Lyra Geometry. Prespacetime Journal, 3, 83-89.
[24]  Mishra, B., Sahu, P.K. and Ramu, A. (2010) Scale Invariant Theory of Gravitation in Einstein-Rosen Space-Time. Journal of Modern Physics, 1, 185-189.
http://dx.doi.org/10.4236/jmp.2010.13027
[25]  Katore, S.D., Rane, R.S., Wannkhade, K.S. and Sarkate, N.K. (2010) Einstein-Rosen Inflationary Universe in General Relativity. Pramana, 74, 669-673.
http://dx.doi.org/10.1007/s12043-010-0059-y

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133