全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Formalized Quantum Model for Solving the Eigenfunctions

DOI: 10.4236/jqis.2016.61003, PP. 16-30

Keywords: Quantum Operators, Phase Space, Quantum Circuit

Full-Text   Cite this paper   Add to My Lib

Abstract:

This report describes a fundamental model of a quantum circuit for finding complex eigenvalues of Hamiltonian matrices on the quantum computers through the use of an iteration algorithm for estimation of the phase. In addition to this, we demonstrate the use of the model for simulating the resonant states for quantum systems.

References

[1]  Rebentrost, P., Mohseni, M., Kassal, I., Lloyd, S. and Aspuru-Guzik, A. (2009) Environment-Assisted Quantum Transport. New Journal of Physics, 11, 033003.
http://dx.doi.org/10.1088/1367-2630/11/3/033003
[2]  Rebentrost, P., Mohseni, M. and Aspuru-Guzik, A. (2009) Role of Quantum Coherence and Environmental Fluctuations in Chromophoric Energy Transport. The Journal of Physical Chemistry B, 113, 9942-9947.
http://dx.doi.org/10.1021/jp901724d
[3]  Ishizaki, A. and Fleming, G.R. (2009) Unified Treatment of Quantum Coherent and Incoherent Hopping Dynamics in Electronic Energy Transfer: Reduced Hierarchy Equation Approach. The Journal of Chemical Physics, 130, 234111.
http://dx.doi.org/10.1063/1.3155372
[4]  Ishizaki, A. and Fleming, G.R. (2009) Theoretical Examination of Quantum Coherence in a Photosynthetic System at Physiological Temperature. Proceedings of the National Academy of Sciences of the United States of America, 106, 17255-17260.
http://dx.doi.org/10.1073/pnas.0908989106
[5]  Raychev, N. (2015) Quantum Algorithm for Spectral Diffraction of Probability Distributions. International Journal of Scientific and Engineering Research, 6, 1346-1349.
http://dx.doi.org/10.14299/ijser.2015.07.005
[6]  Raychev, N. (2015) Algorithm for Switching 4-Bit Packages in Full Quantum Network with Multiple Network Nodes. International Journal of Scientific and Engineering Research, 6,1289-1294.
http://dx.doi.org/10.14299/ijser.2015.08.004
[7]  Reed, M.D., DiCarlo, L., Johnson, B.R., Sun, L., Schuster, D.I., Frunzio, L. and Schoelkopf, R.J. (2010) High Fidelity Readout in Circuit Quantum Electrodynamics Using the Jaynes-Cummings nonlinearity. Physical Review Letters, 105, 173601.
[8]  Strauch, F.W., Johnson, P.R., Dragt, A.J., Lobb, C.J., Anderson, J.R. and Wellstood, F.C. (2003) Quantum Logic Gates for Coupled Superconducting Phase Qubits. Physical Review Letters, 91, 167005.
http://dx.doi.org/10.1103/PhysRevLett.91.167005
[9]  Raychev, N. (2015) Reply to “The Classical-Quantum Boundary For correlations: Discord and Related Measures”. Abstract and Applied Analysis, 94, 1455-1465.
[10]  Feynman, R.P. (1982) Simulating Physics with Computers. International Journal of Theoretical Physics, 21, 467-488.
[11]  Raychev, N. (2015) Mathematical Approaches for Modified Quantum Calculation. International Journal of Scientific and Engineering Research, 6, 1302-1309.
http://dx.doi.org/10.14299/ijser.2015.08.006
[12]  Sorensen, S., Demler, E. and Lukin, M.D. (2005) Fractional Quantum Hall States of Atoms in Optical Lattices. Physical Review Letters, 94, 086803.
http://dx.doi.org/10.1103/PhysRevLett.94.086803
[13]  Lim, L.-K., Morais Smith, C. and Hemmerich, A. (2008) Staggered-Vortex Superfluid of Ultracold Bosons in an Optical Lattice. Physical Review Letters, 100, 130402.
http://dx.doi.org/10.1103/PhysRevLett.100.130402
[14]  Hemmerich, A. (2010) Effective Time-Independent Description of Optical Lattices with Periodic Driving. Physical Review Letters, 81, 063626.
http://dx.doi.org/10.1103/PhysRevA.81.063626
[15]  Eckardt, A., Hauke, P., Soltan-Panahi, P., Becker, C., Sengstock, K. and Lewenstein, M. (2010) Frustrated Quantum Anti-Ferromagnetism with Ultracold Bosons in a Triangular Lattice. Europhysics Letters, 89, 10010.
http://dx.doi.org/10.1209/0295-5075/89/10010
[16]  Creffield, C.E. and Sols, F. (2011) Directed Transport in Driven Optical Lattices by Gauge Generation. Physical Review A, 84, 023630.
http://dx.doi.org/10.1103/PhysRevA.84.023630
[17]  Miyake, H., Siviloglou, G.A., Kennedy, C.J., Burton, W.C. and Ketterle, W. (2013) Realizing the Harper Hamiltonian with Laser-Assisted Tunneling in Optical Lattices. Physical Review Letters, 111, 185302.
http://dx.doi.org/10.1103/PhysRevLett.111.185302
[18]  Aidelsburger, M., Lohse, M., Schweizer, C., Atala, M., Barreiro, J.T., Nascimbene, S., Cooper, N.R., Bloch, I. and Goldman, N. (2014) Revealing the Topology of Hofstadter Bands with Ultracold Bosonic Atoms.
http://arxiv.org/abs/1407.4205v1
[19]  Raychev, N. (2015) Quantum Computing Models for Algebraic Applications. International Journal of Scientific and Engineering Research, 6,1281-1288.
http://dx.doi.org/10.14299/ijser.2015.08.003
[20]  Toth, G. and Guhne, O. (2005) Entanglement Detection in the Stabilizer Formalism. Physical Review A, 72, 022340.
http://dx.doi.org/10.1103/PhysRevA.72.022340
[21]  Raychev, N. (2015) Indexed Cluster of Controlled Computational Operators. International Journal of Scientific and Engineering Research, 6, 1295-1301.
http://dx.doi.org/10.14299/ijser.2015.08.005
[22]  Raychev, N. (2015) Quantum Multidimensional Operators with Many Controls. International Journal of Scientific and Engineering Research, 6, 1310-1317.
http://dx.doi.org/10.14299/ijser.2015.08.007
[23]  Veis, L. and Pittner, J. (2010) Quantum Computing Applied to Calculations of Molecular Energies: CH2 Benchmark. The Journal of Chemical Physics, 133, 194106.
http://dx.doi.org/10.1063/1.3503767

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133