全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

DEA Scores’ Confidence Intervals with Past-Present and Past-Present-Future Based Resampling

DOI: 10.4236/ajor.2016.62015, PP. 121-135

Keywords: Data Variation, Resampling, Confidence Interval, Past-Present-Future DEA, Hospital

Full-Text   Cite this paper   Add to My Lib

Abstract:

In data envelopment analysis (DEA), input and output values are subject to change for several reasons. Such variations differ in their input/output items and their decision-making units (DMUs). Hence, DEA efficiency scores need to be examined by considering these factors. In this paper, we propose new resampling models based on these variations for gauging the confidence intervals of DEA scores. The first model utilizes past-present data for estimating data variations imposing chronological order weights which are supplied by Lucas series (a variant of Fibonacci series). The second model deals with future prospects. This model aims at forecasting the future efficiency score and its confidence interval for each DMU. We applied our models to a dataset composed of Japanese municipal hospitals.

References

[1]  Charnes, A., Cooper, W.W. and Rhodes, E. (1978) Measuring the Efficiency of Decision Making Units. European Journal of Operational Research, 2, 429-444.
http://dx.doi.org/10.1016/0377-2217(78)90138-8
[2]  Banker, R. (1993) Maximum Likelihood, Consistency and Data Envelopment Analysis: A Statistical Foundation. Management Science, 39, 1265-1273.
http://dx.doi.org/10.1287/mnsc.39.10.1265
[3]  Banker, R. and Natarajan, R. (2004) Chapter 11. Statistical Test Based on DEA Efficiency Scores. In: Cooper, Seiford and Zhu, Eds., Handbook on Data Envelopment Analysis, Springer, 299-321.
http://dx.doi.org/10.1007/1-4020-7798-x_11
[4]  Charnes, A and Neralic, L. (1990) Sensitivity Analysis of the Additive Model in Data Envelopment Analysis. European Journal of Operational Research, 48, 332-341.
http://dx.doi.org/10.1016/0377-2217(90)90416-9
[5]  Neralic, L. (1998) Sensitivity Analysis in Models of Data Envelopment Analysis. Mathematical Communications, 3, 41-59.
[6]  Zhu, J. (2001) Super-Efficiency and DEA Sensitivity Analysis. European Journal of Operational Research, 129, 443-455.
http://dx.doi.org/10.1016/S0377-2217(99)00433-6
[7]  Simar, L. and Wilson, P. (1998) Sensitivity of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models. Management Science, 44, 49-61.
http://dx.doi.org/10.1287/mnsc.44.1.49
[8]  Simar, L. and Wilson, P.W. (2000) A General Methodology for Bootstrapping in Non-Parametric Frontier Models. Journal of Applied Statistics, 27, 779-802.
http://dx.doi.org/10.1080/02664760050081951
[9]  Barnum, D.T., Gleason, J.M., Karlaftis, M.G., Schumock, G.T., Shields, K.L., Tandon, S. and Walton, S.M. (2011) Estimating DEA Confidence Intervals with Statistical Panel Data Analysis. Journal of Applied Statistics, 39, 815-828.
http://dx.doi.org/10.1080/02664763.2011.620948
[10]  Cook, W.D., Tone, K. and Zhu, J. (2014) Data Envelopment Analysis: Prior to Choosing a Model. Omega, 44, 1-4.
http://dx.doi.org/10.1016/j.omega.2013.09.004
[11]  Yang, M., Wan, G. and Zheng, E. (2014) A Predictive DEA Model for Outlier Detection. Journal of Management Analytics, 1, 20-41.
http://dx.doi.org/10.1080/23270012.2014.889911
[12]  Tone, K. (2002) A Slacks-Based Measure of Super-Efficiency in Data Envelopment Analysis. European Journal of Operational Research, 143, 32-41.
http://dx.doi.org/10.1016/S0377-2217(01)00324-1
[13]  Ouenniche, J., Xu, B. and Tone, K. (2014) Relative Performance Evaluation of Competing Crude oil Prices’ Volatility Forecasting Models: A Slacks-Based Super-Efficiency DEA Model. American Journal of Operations Research, 4, 235-245.
http://dx.doi.org/10.4236/ajor.2014.44023
[14]  Tone, K. (2001) A Slacks-Based Measure of Efficiency in Data Envelopment Analysis. European Journal of Operational Research, 130, 498-509.
http://dx.doi.org/10.1016/S0377-2217(99)00407-5
[15]  Cooper, W.W., Seiford, L.M. and Tone, K. (2007) Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software. 2nd Edition, Springer, New York.
[16]  Efron, B. (1979) Bootstrap Methods: Another Look at the Jackknife. Annals of Statistics, 7, 1-26.
http://dx.doi.org/10.1214/aos/1176344552
[17]  Efron B. and Tibshirani R. (1993) An Introduction to the Bootstrap. New York: Chapman & Hall, CRC Press.
http://dx.doi.org/10.1007/978-1-4899-4541-9
[18]  Fisher, R.A. (1915) Frequency Distribution of the Values of the Correlation Coefficient in Samples from an Indefinitely Large Population. Biometrika, 10, 507-521.
http://dx.doi.org/10.2307/2331838
[19]  Xu, B. and Ouenniche, J. (2011) A Multidimensional Framework for Performance Evaluation of Forecasting Models: Context-Dependent DEA. Applied Financial Economics, 21, 1873-1890.
http://dx.doi.org/10.1080/09603107.2011.597722
[20]  Xu, B. and Ouenniche, J. (2012) A Data Envelopment Analysis-Based Framework for the Relative Performance Evaluation of Competing Crude oil Prices’ Volatility Forecasting Model. Energy Economics, 34, 576-583.
http://dx.doi.org/10.1016/j.eneco.2011.12.005
[21]  Chang, T.S., Tone, K. and Wu, C.H. (2014) Past-Present-Future Intertemporal DEA Models. Journal of the Operational Research Society, 214, 73-98.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133