全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Small Secreted Virulence-Related Protein Is Essential for the Necrotrophic Interactions of Sclerotinia sclerotiorum with Its Host Plants

DOI: 10.1371/journal.ppat.1005435

Full-Text   Cite this paper   Add to My Lib

Abstract:

Small, secreted proteins have been found to play crucial roles in interactions between biotrophic/hemi-biotrophic pathogens and plants. However, little is known about the roles of these proteins produced by broad host-range necrotrophic phytopathogens during infection. Here, we report that a cysteine-rich, small protein SsSSVP1 in the necrotrophic phytopathogen Sclerotinia sclerotiorum was experimentally confirmed to be a secreted protein, and the secretion of SsSSVP1 from hyphae was followed by internalization and cell-to-cell movement independent of a pathogen in host cells. SsSSVP1?SP could induce significant plant cell death and targeted silencing of SsSSVP1 resulted in a significant reduction in virulence. Through yeast two-hybrid (Y2H), coimmunoprecipitation (co-IP) and bimolecular fluorescence complementation (BiFC) assays, we demonstrated that SsSSVP1?SP interacted with QCR8, a subunit of the cytochrome b-c1 complex of mitochondrial respiratory chain in plants. Double site-directed mutagenesis of two cysteine residues (C38 and C44) in SsSSVP1?SP had significant effects on its homo-dimer formation, SsSSVP1?SP-QCR8 interaction and plant cell death induction, indicating that partial cysteine residues surely play crucial roles in maintaining the structure and function of SsSSVP1. Co-localization and BiFC assays showed that SsSSVP1?SP might hijack QCR8 to cytoplasm before QCR8 targeting into mitochondria, thereby disturbing its subcellular localization in plant cells. Furthermore, virus induced gene silencing (VIGS) of QCR8 in tobacco caused plant abnormal development and cell death, indicating the cell death induced by SsSSVP1?SP might be caused by the SsSSVP1?SP-QCR8 interaction, which had disturbed the QCR8 subcellular localization and hence disabled its biological functions. These results suggest that SsSSVP1 is a potential effector which may manipulate plant energy metabolism to facilitate the infection of S. sclerotiorum. Our findings indicate novel roles of small secreted proteins in the interactions between host-non-specific necrotrophic fungi and plants, and highlight the significance to illuminate the pathogenic mechanisms of this type of interaction.

References

[1]  Boland G, Hall R (1994) Index of plant hosts of Sclerotinia sclerotiorum. Can J Plant Pathol 16: 93. doi: 10.1080/07060669409500766
[2]  Laluk K, Mengiste T (2010) Necrotroph attacks on plants: wanton destruction or covert extortion? Arabidopsis Book 8: e0136. doi: 10.1199/tab.0136. pmid:22303261
[3]  Koeck M, Hardham AR, Dodds PN (2011) The role of effectors of biotrophic and hemibiotrophic fungi in infection. Cell Microbiol 13: 1849–1857. doi: 10.1111/j.1462-5822.2011.01665.x. pmid:21848815
[4]  Khang CH, Berruyer R, Giraldo MC, Kankanala P, Park SY, et al. (2010) Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement. Plant Cell 22: 1388–1403. doi: 10.1105/tpc.109.069666. pmid:20435900
[5]  Ravensdale M, Nemri A, Thrall PH, Ellis JG, Dodds PN (2011) Co-evolutionary interactions between host resistance and pathogen effector genes in flax rust disease. Mol Plant Pathol 12: 93–102. doi: 10.1111/j.1364-3703.2010.00657.x. pmid:21118351
[6]  Schirawski J, Mannhaupt G, Munch K, Brefort T, Schipper K, et al. (2010) Pathogenicity determinants in smut fungi revealed by genome comparison. Science 330: 1546–1548. doi: 10.1126/science.1195330. pmid:21148393
[7]  Spanu PD, Abbott JC, Amselem J, Burgis TA, Soanes DM, et al. (2010) Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science 330: 1543–1546. doi: 10.1126/science.1194573. pmid:21148392
[8]  Riou C, Freyssinet G, Fevre M (1991) Production of cell wall-degrading enzymes by the phytopathogenic fungus Sclerotinia sclerotiorum. Appl Environ Microbiol 57: 1478–1484. pmid:16348487
[9]  Dutton MV, Evans CS (1996) Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can J Microbiol 42: 881–895. doi: 10.1139/m96-114
[10]  Cessna SG, Sears VE, Dickman MB, Low PS (2000) Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Plant Cell 12: 2191–2200. pmid:11090218 doi: 10.2307/3871114
[11]  Williams B, Kabbage M, Kim HJ, Britt R, Dickman MB (2011) Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment. PLoS Pathog 7: e1002107. doi: 10.1371/journal.ppat.1002107. pmid:21738471
[12]  Kim KS, Min JY, Dickman MB (2008) Oxalic acid is an elicitor of plant programmed cell death during Sclerotinia sclerotiorum disease development. Mol Plant Microbe Interact 21: 605–612. doi: 10.1094/MPMI-21-5-0605. pmid:18393620
[13]  Kabbage M, Williams B, Dickman MB (2013) Cell death control: the interplay of apoptosis and autophagy in the pathogenicity of Sclerotinia sclerotiorum. PLoS Pathog 9: e1003287. doi: 10.1371/journal.ppat.1003287. pmid:23592997
[14]  Faris JD, Zhang Z, Lu H, Lu S, Reddy L, et al. (2010) A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proc Natl Acad Sci U S A 107: 13544–13549. doi: 10.1073/pnas.1004090107. pmid:20624958
[15]  Hammond-Kosack KE, Rudd JJ (2008) Plant resistance signalling hijacked by a necrotrophic fungal pathogen. Plant Signal Behav 3: 993–995. pmid:19704431 doi: 10.4161/psb.6292
[16]  Lorang J, Kidarsa T, Bradford CS, Gilbert B, Curtis M, et al. (2012) Tricking the guard: exploiting plant defense for disease susceptibility. Science 338: 659–662. doi: 10.1126/science.1226743. pmid:23087001
[17]  Nagy ED, Bennetzen JL (2008) Pathogen corruption and site-directed recombination at a plant disease resistance gene cluster. Genome Res 18: 1918–1923. doi: 10.1101/gr.078766.108. pmid:18719093
[18]  Liu ZH, Faris JD, Meinhardt SW, Ali S, Rasmussen JB, et al. (2004) Genetic and physical mapping of a gene conditioning sensitivity in wheat to a partially purified host-selective toxin produced by Stagonospora nodorum. Phytopathology 94: 1056–1060. doi: 10.1094/PHYTO.2004.94.10.1056. pmid:18943793
[19]  Liu Z, Friesen TL, Ling H, Meinhardt SW, Oliver RP, et al. (2006) The Tsn1-ToxA interaction in the wheat-Stagonospora nodorum pathosystem parallels that of the wheat-tan spot system. Genome 49: 1265–1273. pmid:17213908 doi: 10.1139/g06-088
[20]  Friesen TL, Stukenbrock EH, Liu Z, Meinhardt S, Ling H, et al. (2006) Emergence of a new disease as a result of interspecific virulence gene transfer. Nat Genet 38: 953–956. pmid:16832356 doi: 10.1038/ng1839
[21]  Friesen TL, Meinhardt SW, Faris JD (2007) The Stagonospora nodorum-wheat pathosystem involves multiple proteinaceous host-selective toxins and corresponding host sensitivity genes that interact in an inverse gene-for-gene manner. Plant J 51: 681–692. pmid:17573802 doi: 10.1111/j.1365-313x.2007.03166.x
[22]  Friesen TL, Zhang Z, Solomon PS, Oliver RP, Faris JD (2008) Characterization of the interaction of a novel Stagonospora nodorum host-selective toxin with a wheat susceptibility gene. Plant Physiol 146: 682–693. pmid:18065563 doi: 10.1104/pp.107.108761
[23]  Abeysekara NS, Friesen TL, Keller B, Faris JD (2009) Identification and characterization of a novel host-toxin interaction in the wheat-Stagonospora nodorum pathosystem. Theor Appl Genet 120: 117–126. doi: 10.1007/s00122-009-1163-6. pmid:19816671
[24]  Zhang Z, Friesen TL, Xu SS, Shi G, Liu Z, et al. (2011) Two putatively homoeologous wheat genes mediate recognition of SnTox3 to confer effector-triggered susceptibility to Stagonospora nodorum. Plant J 65: 27–38. doi: 10.1111/j.1365-313X.2010.04407.x. pmid:21175887
[25]  El Oirdi M, El Rahman TA, Rigano L, El Hadrami A, Rodriguez MC, et al. (2011) Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in tomato. Plant Cell 23: 2405–2421. doi: 10.1105/tpc.111.083394. pmid:21665999
[26]  Kabbage M, Yarden O, Dickman MB (2015) Pathogenic attributes of Sclerotinia sclerotiorum: switching from a biotrophic to necrotrophic lifestyle. Plant Sci 233: 53–60. doi: 10.1016/j.plantsci.2014.12.018. pmid:25711813
[27]  Zhu W, Wei W, Fu Y, Cheng J, Xie J, et al. (2013) A secretory protein of necrotrophic fungus Sclerotinia sclerotiorum that suppresses host resistance. PLoS One 8: e53901. doi: 10.1371/journal.pone.0053901. pmid:23342034
[28]  Xiao X, Xie J, Cheng J, Li G, Yi X, et al. (2014) Novel secretory protein Ss-Caf1 of the plant-pathogenic fungus Sclerotinia sclerotiorum is required for host penetration and normal sclerotial development. Mol Plant Microbe Interact 27: 40–55. doi: 10.1094/MPMI-05-13-0145-R. pmid:24299212
[29]  Noda J, Brito N, Gonzalez C (2010) The Botrytis cinerea xylanase Xyn11A contributes to virulence with its necrotizing activity, not with its catalytic activity. BMC Plant Biol 10: 38. doi: 10.1186/1471-2229-10-38. pmid:20184750
[30]  Guyon K, Balague C, Roby D, Raffaele S (2014) Secretome analysis reveals effector candidates associated with broad host range necrotrophy in the fungal plant pathogen Sclerotinia sclerotiorum. BMC Genomics 15: 336. doi: 10.1186/1471-2164-15-336. pmid:24886033
[31]  Stergiopoulos I, de Wit PJ (2009) Fungal effector proteins. Annu Rev Phytopathol 47: 233–263. doi: 10.1146/annurev.phyto.112408.132637. pmid:19400631
[32]  Rep M (2005) Small proteins of plant-pathogenic fungi secreted during host colonization. FEMS Microbiol Lett 253: 19–27. pmid:16216445 doi: 10.1016/j.femsle.2005.09.014
[33]  Kamoun S (2006) A catalogue of the effector secretome of plant pathogenic oomycetes. Annu Rev Phytopathol 44: 41–60. pmid:16448329 doi: 10.1146/annurev.phyto.44.070505.143436
[34]  Kamoun S (2007) Groovy times: filamentous pathogen effectors revealed. Curr Opin Plant Biol 10: 358–365. pmid:17611143 doi: 10.1016/j.pbi.2007.04.017
[35]  Lyu X, Shen C, Xie J, Fu Y, Jiang D, et al. (2015) A "footprint" of plant carbon fixation cycle functions during the development of a heterotrophic fungus. Sci Rep 5: 12952. doi: 10.1038/srep12952. pmid:26263551
[36]  Kalderon D, Roberts BL, Richardson WD, Smith AE (1984) A short amino acid sequence able to specify nuclear location. Cell 39: 499–509. pmid:6096007 doi: 10.1016/0092-8674(84)90457-4
[37]  Iwata S, Lee JW, Okada K, Lee JK, Iwata M, et al. (1998) Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science 281: 64–71. pmid:9651245 doi: 10.1126/science.281.5373.64
[38]  Nelson BK, Cai X, Nebenfuhr A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51: 1126–1136. pmid:17666025 doi: 10.1111/j.1365-313x.2007.03212.x
[39]  Liu Y, Schiff M, Marathe R, Dinesh-Kumar SP (2002) Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 30: 415–429. pmid:12028572 doi: 10.1046/j.1365-313x.2002.01297.x
[40]  Sevier CS, Kaiser CA (2002) Formation and transfer of disulphide bonds in living cells. Nat Rev Mol Cell Biol 3: 836–847. pmid:12415301 doi: 10.1038/nrm954
[41]  Marianayagam NJ, Sunde M, Matthews JM (2004) The power of two: protein dimerization in biology. Trends Biochem Sci 29: 618–625. pmid:15501681 doi: 10.1016/j.tibs.2004.09.006
[42]  Laskowski M Jr., Kato I (1980) Protein inhibitors of proteinases. Annu Rev Biochem 49: 593–626. pmid:6996568 doi: 10.1146/annurev.bi.49.070180.003113
[43]  Ridout CJ, Skamnioti P, Porritt O, Sacristan S, Jones JD, et al. (2006) Multiple avirulence paralogues in cereal powdery mildew fungi may contribute to parasite fitness and defeat of plant resistance. Plant Cell 18: 2402–2414. pmid:16905653 doi: 10.1105/tpc.106.043307
[44]  Block A, Li G, Fu ZQ, Alfano JR (2008) Phytopathogen type III effector weaponry and their plant targets. Curr Opin Plant Biol 11: 396–403. doi: 10.1016/j.pbi.2008.06.007. pmid:18657470
[45]  Gohre V, Robatzek S (2008) Breaking the barriers: microbial effector molecules subvert plant immunity. Annu Rev Phytopathol 46: 189–215. doi: 10.1146/annurev.phyto.46.120407.110050. pmid:18422429
[46]  Wang Q, Han C, Ferreira AO, Yu X, Ye W, et al. (2011) Transcriptional programming and functional interactions within the Phytophthora sojae RXLR effector repertoire. Plant Cell 23: 2064–2086. doi: 10.1105/tpc.111.086082. pmid:21653195
[47]  Whisson SC, Boevink PC, Moleleki L, Avrova AO, Morales JG, et al. (2007) A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature 450: 115–118. pmid:17914356 doi: 10.1038/nature06203
[48]  Birch PR, Boevink PC, Gilroy EM, Hein I, Pritchard L, et al. (2008) Oomycete RXLR effectors: delivery, functional redundancy and durable disease resistance. Curr Opin Plant Biol 11: 373–379. doi: 10.1016/j.pbi.2008.04.005. pmid:18511334
[49]  Wawra S, Belmonte R, Lobach L, Saraiva M, Willems A, et al. (2012) Secretion, delivery and function of oomycete effector proteins. Curr Opin Microbiol 15: 685–691. doi: 10.1016/j.mib.2012.10.008. pmid:23177095
[50]  Panstruga R, Dodds PN (2009) Terrific protein traffic: the mystery of effector protein delivery by filamentous plant pathogens. Science 324: 748–750. doi: 10.1126/science.1171652. pmid:19423815
[51]  Ellis J, Catanzariti AM, Dodds P (2006) The problem of how fungal and oomycete avirulence proteins enter plant cells. Trends Plant Sci 11: 61–63. pmid:16406302 doi: 10.1016/j.tplants.2005.12.008
[52]  Birch PR, Rehmany AP, Pritchard L, Kamoun S, Beynon JL (2006) Trafficking arms: oomycete effectors enter host plant cells. Trends Microbiol 14: 8–11. pmid:16356717 doi: 10.1016/j.tim.2005.11.007
[53]  Kale SD, Gu B, Capelluto DG, Dou D, Feldman E, et al. (2010) External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells. Cell 142: 284–295. doi: 10.1016/j.cell.2010.06.008. pmid:20655469
[54]  Dou D, Kale SD, Wang X, Jiang RH, Bruce NA, et al. (2008) RXLR-mediated entry of Phytophthora sojae effector Avr1b into soybean cells does not require pathogen-encoded machinery. Plant Cell 20: 1930–1947. doi: 10.1105/tpc.107.056093. pmid:18621946
[55]  Kale SD, Tyler BM (2011) Entry of oomycete and fungal effectors into plant and animal host cells. Cell Microbiol 13: 1839–1848. doi: 10.1111/j.1462-5822.2011.01659.x. pmid:21819515
[56]  Gu B, Kale SD, Wang Q, Wang D, Pan Q, et al. (2011) Rust secreted protein Ps87 is conserved in diverse fungal pathogens and contains a RXLR-like motif sufficient for translocation into plant cells. PLoS One 6: e27217. doi: 10.1371/journal.pone.0027217. pmid:22076138
[57]  Tyler BM, Kale SD, Wang Q, Tao K, Clark HR, et al. (2013) Microbe-independent entry of oomycete RxLR effectors and fungal RxLR-like effectors into plant and animal cells is specific and reproducible. Mol Plant Microbe Interact 26: 611–616. doi: 10.1094/MPMI-02-13-0051-IA. pmid:23550528
[58]  Manning VA, Ciuffetti LM (2005) Localization of Ptr ToxA produced by Pyrenophora tritici-repentis reveals protein import into wheat mesophyll cells. Plant Cell 17: 3203–3212. pmid:16199615 doi: 10.1105/tpc.105.035063
[59]  Meinhardt SW, Cheng W, Kwon CY, Donohue CM, Rasmussen JB (2002) Role of the arginyl-glycyl-aspartic motif in the action of Ptr ToxA produced by Pyrenophora tritici-repentis. Plant Physiol 130: 1545–1551. pmid:12428019 doi: 10.1104/pp.006684
[60]  Sarma GN, Manning VA, Ciuffetti LM, Karplus PA (2005) Structure of Ptr ToxA: An RGD-containing host-selective toxin from Pyrenophora tritici-repentis. Plant Cell 17: 3190–3202. pmid:16214901 doi: 10.1105/tpc.105.034918
[61]  Braun HP, Kruft V, Schmitz UK (1994) Molecular identification of the ten subunits of cytochrome-c reductase from potato mitochondria. Planta 193: 99–106. pmid:7764624 doi: 10.1007/bf00191612
[62]  Kong L, Wu J, Lu L, Xu Y, Zhou X (2014) Interaction between Rice stripe virus disease-specific protein and host PsbP enhances virus symptoms. Mol Plant 7: 691–708. doi: 10.1093/mp/sst158. pmid:24214893
[63]  Xie J, Wei D, Jiang D, Fu Y, Li G, et al. (2006) Characterization of debilitation-associated mycovirus infecting the plant-pathogenic fungus Sclerotinia sclerotiorum. J Gen Virol 87: 241–249. pmid:16361437 doi: 10.1099/vir.0.81522-0
[64]  Li Y, Chen J, Bennett R, Kiddle G, Wallsgrove R, et al. Breeding, inheritance, and biochemical studies on Brassica napus cv. Zhongyou 821: tolerance to Sclerotinia sclerotiorum (stem rot); 1999.
[65]  Yu Y, Jiang D, Xie J, Cheng J, Li G, et al. (2012) Ss-Sl2, a novel cell wall protein with PAN modules, is essential for sclerotial development and cellular integrity of Sclerotinia sclerotiorum. PLoS One 7: e34962. doi: 10.1371/journal.pone.0034962. pmid:22558105
[66]  Yuan M, Chu Z, Li X, Xu C, Wang S (2010) The bacterial pathogen Xanthomonas oryzae overcomes rice defenses by regulating host copper redistribution. Plant Cell 22: 3164–3176. doi: 10.1105/tpc.110.078022. pmid:20852017
[67]  Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8: 785–786. doi: 10.1038/nmeth.1701. pmid:21959131
[68]  Papadopoulos JS, Agarwala R (2007) COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics 23: 1073–1079. pmid:17332019 doi: 10.1093/bioinformatics/btm076
[69]  Clamp M, Cuff J, Searle SM, Barton GJ (2004) The Jalview Java alignment editor. Bioinformatics 20: 426–427. pmid:14960472 doi: 10.1093/bioinformatics/btg430
[70]  Nguyen QB, Kadotani N, Kasahara S, Tosa Y, Mayama S, et al. (2008) Systematic functional analysis of calcium-signalling proteins in the genome of the rice-blast fungus, Magnaporthe oryzae, using a high-throughput RNA-silencing system. Mol Microbiol 68: 1348–1365. doi: 10.1111/j.1365-2958.2008.06242.x. pmid:18433453
[71]  Wise AA, Liu Z, Binns AN (2006) Three methods for the introduction of foreign DNA into Agrobacterium. Methods Mol Biol 343: 43–53. pmid:16988332 doi: 10.1385/1-59745-130-4:43
[72]  Chen PY, Wang CK, Soong SC, To KY (2003) Complete sequence of the binary vector pBI121 and its application in cloning T-DNA insertion from transgenic plants. Mol Breeding 11: 287–293.
[73]  Zhou X, Li G, Xu JR (2011) Efficient approaches for generating GFP fusion and epitope-tagging constructs in filamentous fungi. Methods Mol Biol 722: 199–212. doi: 10.1007/978-1-61779-040-9_15. pmid:21590423
[74]  Bruno KS, Tenjo F, Li L, Hamer JE, Xu JR (2004) Cellular localization and role of kinase activity of PMK1 in Magnaporthe grisea. Eukaryot Cell 3: 1525–1532. pmid:15590826 doi: 10.1128/ec.3.6.1525-1532.2004
[75]  Hamada W, Reignault P, Bompeix G, Boccara M (1994) Transformation of Botrytis cinerea with the hygromycin B resistance gene, hph. Curr Genet 26: 251–255. pmid:7859308 doi: 10.1007/bf00309556
[76]  Yelton MM, Hamer JE, Timberlake WE (1984) Transformation of Aspergillus nidulans by using a trpC plasmid. Proc Natl Acad Sci U S A 81: 1470. pmid:6324193 doi: 10.1073/pnas.81.5.1470
[77]  Harel A, Bercovich S, Yarden O (2006) Calcineurin is required for sclerotial development and pathogenicity of Sclerotinia sclerotiorum in an oxalic acid-independent manner. Mol Plant Microbe Interact 19: 682–693. pmid:16776301 doi: 10.1094/mpmi-19-0682
[78]  Walter M, Chaban C, Schutze K, Batistic O, Weckermann K, et al. (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40: 428–438. pmid:15469500 doi: 10.1111/j.1365-313x.2004.02219.x
[79]  Choi J, Park J, Kim D, Jung K, Kang S, et al. (2010) Fungal secretome database: integrated platform for annotation of fungal secretomes. BMC Genomics 11: 105. doi: 10.1186/1471-2164-11-105. pmid:20146824

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133