全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Conserved HIV-1-Derived Peptide Presented by HLA-E Renders Infected T-cells Highly Susceptible to Attack by NKG2A/CD94-Bearing Natural Killer Cells

DOI: 10.1371/journal.ppat.1005421

Full-Text   Cite this paper   Add to My Lib

Abstract:

Major histocompatibility class I (MHC-I)-specific inhibitory receptors on natural killer (NK) cells (iNKRs) tolerize mature NK cell responses toward normal cells. NK cells generate cytolytic responses to virus-infected or malignant target cells with altered or decreased MHC-I surface expression due to the loss of tolerizing ligands. The NKG2A/CD94 iNKR suppresses NK cell responses through recognition of the non-classical MHC-I, HLA-E. We used HIV-infected primary T-cells as targets in an in vitro cytolytic assay with autologous NK cells from healthy donors. In these experiments, primary NKG2A/CD94+ NK cells surprisingly generated the most efficient responses toward HIV-infected T-cells, despite high HLA-E expression on the infected targets. Since certain MHC-I-presented peptides can alter recognition by iNKRs, we hypothesized that HIV-1-derived peptides presented by HLA-E on infected cells may block engagement with NKG2A/CD94, thereby engendering susceptibility to NKG2A/CD94+ NK cells. We demonstrate that HLA-E is capable of presenting a highly conserved peptide from HIV-1 capsid (AISPRTLNA) that is not recognized by NKG2A/CD94. We further confirmed that HLA-C expressed on HIV-infected cells restricts attack by KIR2DL+ CD56dim NK cells, in contrast to the efficient responses by CD56bright NK cells, which express predominantly NKG2A/CD94 and lack KIR2DLs. These findings are important since the use of NK cells was recently proposed to treat latently HIV-1-infected patients in combination with latency reversing agents. Our results provide a mechanistic basis to guide these future clinical studies, suggesting that ex vivo-expanded NKG2A/CD94+ KIR2DL- NK cells may be uniquely beneficial.

References

[1]  Ruscetti FW, Mikovits JA, Kalyanaraman VS, Overton R, Stevenson H, et al. (1986) Analysis of effector mechanisms against HTLV-I- and HTLV-III/LAV-infected lymphoid cells. J Immunol 136: 3619–3624. pmid:2422259
[2]  Zheng ZY, Zucker-Franklin D (1992) Apparent ineffectiveness of natural killer cells vis-a-vis retrovirus-infected targets. J Immunol 148: 3679–3685. pmid:1350295
[3]  Cohen GB, Gandhi RT, Davis DM, Mandelboim O, Chen BK, et al. (1999) The selective downregulation of class I major histocompatibility complex proteins by HIV-1 protects HIV-infected cells from NK cells. Immunity 10: 661–671. pmid:10403641 doi: 10.1016/s1074-7613(00)80065-5
[4]  Mavilio D, Benjamin J, Daucher M, Lombardo G, Kottilil S, et al. (2003) Natural killer cells in HIV-1 infection: dichotomous effects of viremia on inhibitory and activating receptors and their functional correlates. Proc Natl Acad Sci U S A 100: 15011–15016. pmid:14645713 doi: 10.1073/pnas.2336091100
[5]  Alter G, Heckerman D, Schneidewind A, Fadda L, Kadie CM, et al. (2011) HIV-1 adaptation to NK-cell-mediated immune pressure. Nature 476: 96–100. doi: 10.1038/nature10237. pmid:21814282
[6]  Fadda L, Korner C, Kumar S, van Teijlingen NH, Piechocka-Trocha A, et al. (2012) HLA-Cw*0102-restricted HIV-1 p24 epitope variants can modulate the binding of the inhibitory KIR2DL2 receptor and primary NK cell function. PLoS Pathog 8: e1002805. doi: 10.1371/journal.ppat.1002805. pmid:22807681
[7]  Miller JD, Weber DA, Ibegbu C, Pohl J, Altman JD, et al. (2003) Analysis of HLA-E peptide-binding specificity and contact residues in bound peptide required for recognition by CD94/NKG2. J Immunol 171: 1369–1375. pmid:12874227 doi: 10.4049/jimmunol.171.3.1369
[8]  Braud V, Jones EY, McMichael A (1997) The human major histocompatibility complex class Ib molecule HLA-E binds signal sequence-derived peptides with primary anchor residues at positions 2 and 9. Eur J Immunol 27: 1164–1169. pmid:9174606 doi: 10.1002/eji.1830270517
[9]  Vales-Gomez M, Reyburn HT, Erskine RA, Lopez-Botet M, Strominger JL (1999) Kinetics and peptide dependency of the binding of the inhibitory NK receptor CD94/NKG2-A and the activating receptor CD94/NKG2-C to HLA-E. EMBO J 18: 4250–4260. pmid:10428963 doi: 10.1093/emboj/18.15.4250
[10]  Kaiser BK, Pizarro JC, Kerns J, Strong RK (2008) Structural basis for NKG2A/CD94 recognition of HLA-E. Proc Natl Acad Sci U S A 105: 6696–6701. doi: 10.1073/pnas.0802736105. pmid:18448674
[11]  Ulbrecht M, Martinozzi S, Grzeschik M, Hengel H, Ellwart JW, et al. (2000) Cutting edge: the human cytomegalovirus UL40 gene product contains a ligand for HLA-E and prevents NK cell-mediated lysis. J Immunol 164: 5019–5022. pmid:10799855 doi: 10.4049/jimmunol.164.10.5019
[12]  Tomasec P, Braud VM, Rickards C, Powell MB, McSharry BP, et al. (2000) Surface expression of HLA-E, an inhibitor of natural killer cells, enhanced by human cytomegalovirus gpUL40. Science 287: 1031. pmid:10669413 doi: 10.1126/science.287.5455.1031
[13]  Michaelsson J, Teixeira de Matos C, Achour A, Lanier LL, Karre K, et al. (2002) A signal peptide derived from hsp60 binds HLA-E and interferes with CD94/NKG2A recognition. J Exp Med 196: 1403–1414. pmid:12461076 doi: 10.1084/jem.20020797
[14]  Mela CM, Burton CT, Imami N, Nelson M, Steel A, et al. (2005) Switch from inhibitory to activating NKG2 receptor expression in HIV-1 infection: lack of reversion with highly active antiretroviral therapy. Aids 19: 1761–1769. pmid:16227783 doi: 10.1097/01.aids.0000183632.12418.33
[15]  Mestre G, Garcia F, Martinez E, Milinkovic A, Lopez A, et al. (2008) Short Communication: Natural killer cells and expression of KIR receptors in chronic HIV type 1-infected patients after different strategies of structured therapy interruption. AIDS Res Hum Retroviruses 24: 1485–1495. doi: 10.1089/aid.2008.0135. pmid:19025397
[16]  Brunetta E, Fogli M, Varchetta S, Bozzo L, Hudspeth KL, et al. (2010) Chronic HIV-1 viremia reverses NKG2A/NKG2C ratio on natural killer cells in patients with human cytomegalovirus co-infection. AIDS 24: 27–34. doi: 10.1097/QAD.0b013e3283328d1f. pmid:19910789
[17]  Nattermann J, Nischalke HD, Hofmeister V, Kupfer B, Ahlenstiel G, et al. (2005) HIV-1 infection leads to increased HLA-E expression resulting in impaired function of natural killer cells. Antivir Ther 10: 95–107. pmid:15751767
[18]  Lee N, Llano M, Carretero M, Ishitani A, Navarro F, et al. (1998) HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. Proc Natl Acad Sci U S A 95: 5199–5204. pmid:9560253 doi: 10.1073/pnas.95.9.5199
[19]  Lazetic S, Chang C, Houchins JP, Lanier LL, Phillips JH (1996) Human natural killer cell receptors involved in MHC class I recognition are disulfide-linked heterodimers of CD94 and NKG2 subunits. J Immunol 157: 4741–4745. pmid:8943374
[20]  Song R, Lisovsky I, Lebouche B, Routy JP, Bruneau J, et al. (2014) HIV protective KIR3DL1/S1-HLA-B genotypes influence NK cell-mediated inhibition of HIV replication in autologous CD4 targets. PLoS Pathog 10: e1003867. doi: 10.1371/journal.ppat.1003867. pmid:24453969
[21]  Kim S, Poursine-Laurent J, Truscott SM, Lybarger L, Song YJ, et al. (2005) Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 436: 709–713. pmid:16079848 doi: 10.1038/nature03847
[22]  Fernandez NC, Treiner E, Vance RE, Jamieson AM, Lemieux S, et al. (2005) A subset of natural killer cells achieves self-tolerance without expressing inhibitory receptors specific for self-MHC molecules. Blood 105: 4416–4423. pmid:15728129 doi: 10.1182/blood-2004-08-3156
[23]  Johansson S, Johansson M, Rosmaraki E, Vahlne G, Mehr R, et al. (2005) Natural killer cell education in mice with single or multiple major histocompatibility complex class I molecules. J Exp Med 201: 1145–1155. pmid:15809355 doi: 10.1084/jem.20050167
[24]  Anfossi N, Andre P, Guia S, Falk CS, Roetynck S, et al. (2006) Human NK cell education by inhibitory receptors for MHC class I. Immunity 25: 331–342. pmid:16901727 doi: 10.1016/j.immuni.2006.06.013
[25]  Brodin P, Hoglund P (2008) Beyond licensing and disarming: a quantitative view on NK-cell education. Eur J Immunol 38: 2934–2937. doi: 10.1002/eji.200838760. pmid:18979511
[26]  Petrie EJ, Clements CS, Lin J, Sullivan LC, Johnson D, et al. (2008) CD94-NKG2A recognition of human leukocyte antigen (HLA)-E bound to an HLA class I leader sequence. J Exp Med 205: 725–735. doi: 10.1084/jem.20072525. pmid:18332182
[27]  Rucevic M, Boucau J, Dinter J, Kourjian G, Le Gall S (2014) Mechanisms of HIV protein degradation into epitopes: implications for vaccine design. Viruses 6: 3271–3292. doi: 10.3390/v6083271. pmid:25196483
[28]  Le Gall S, Stamegna P, Walker BD (2007) Portable flanking sequences modulate CTL epitope processing. J Clin Invest 117: 3563–3575. pmid:17975674 doi: 10.1172/jci32047
[29]  Zhang SC, Martin E, Shimada M, Godfrey SB, Fricke J, et al. (2012) Aminopeptidase substrate preference affects HIV epitope presentation and predicts immune escape patterns in HIV-infected individuals. J Immunol 188: 5924–5934. doi: 10.4049/jimmunol.1200219. pmid:22586036
[30]  Kourjian G, Xu Y, Mondesire-Crump I, Shimada M, Gourdain P, et al. (2014) Sequence-specific alterations of epitope production by HIV protease inhibitors. J Immunol 192: 3496–3506. doi: 10.4049/jimmunol.1302805. pmid:24616479
[31]  Dinter J, Duong E, Lai NY, Berberich MJ, Kourjian G, et al. (2015) Variable processing and cross-presentation of HIV by dendritic cells and macrophages shapes CTL immunodominance and immune escape. PLoS Pathog 11: e1004725. doi: 10.1371/journal.ppat.1004725. pmid:25781895
[32]  Rihn SJ, Wilson SJ, Loman NJ, Alim M, Bakker SE, et al. (2013) Extreme genetic fragility of the HIV-1 capsid. PLoS Pathog 9: e1003461. doi: 10.1371/journal.ppat.1003461. pmid:23818857
[33]  Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, et al. (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272: 263–267. pmid:8602510 doi: 10.1126/science.272.5259.263
[34]  Uhrberg M, Valiante NM, Shum BP, Shilling HG, Lienert-Weidenbach K, et al. (1997) Human diversity in killer cell inhibitory receptor genes. Immunity 7: 753–763. pmid:9430221 doi: 10.1016/s1074-7613(00)80394-5
[35]  Nagler A, Lanier LL, Cwirla S, Phillips JH (1989) Comparative studies of human FcRIII-positive and negative natural killer cells. J Immunol 143: 3183–3191. pmid:2530273
[36]  Cooper MA, Fehniger TA, Caligiuri MA (2001) The biology of human natural killer-cell subsets. Trends Immunol 22: 633–640. pmid:11698225 doi: 10.1016/s1471-4906(01)02060-9
[37]  Jacobs R, Hintzen G, Kemper A, Beul K, Kempf S, et al. (2001) CD56bright cells differ in their KIR repertoire and cytotoxic features from CD56dim NK cells. Eur J Immunol 31: 3121–3127. pmid:11592089 doi: 10.1002/1521-4141(2001010)31:10<3121::aid-immu3121>3.0.co;2-4
[38]  Reeves RK, Li H, Jost S, Blass E, Schafer JL, et al. (2015) Antigen-specific NK cell memory in rhesus macaques. Nat Immunol 16: 927–932. doi: 10.1038/ni.3227. pmid:26193080
[39]  Reeves RK, Gillis J, Wong FE, Yu Y, Connole M, et al. (2010) CD16- natural killer cells: enrichment in mucosal and secondary lymphoid tissues and altered function during chronic SIV infection. Blood 115: 4439–4446. doi: 10.1182/blood-2010-01-265595. pmid:20339088
[40]  Ward J, Davis Z, DeHart J, Zimmerman E, Bosque A, et al. (2009) HIV-1 Vpr triggers natural killer cell-mediated lysis of infected cells through activation of the ATR-mediated DNA damage response. PLoS Pathog 5: e1000613. doi: 10.1371/journal.ppat.1000613. pmid:19798433
[41]  Iordanskiy S, Zhao Y, Dubrovsky L, Iordanskaya T, Chen M, et al. (2004) Heat shock protein 70 protects cells from cell cycle arrest and apoptosis induced by human immunodeficiency virus type 1 viral protein R. J Virol 78: 9697–9704. pmid:15331702 doi: 10.1128/jvi.78.18.9697-9704.2004
[42]  Lee N, Goodlett DR, Ishitani A, Marquardt H, Geraghty DE (1998) HLA-E surface expression depends on binding of TAP-dependent peptides derived from certain HLA class I signal sequences. J Immunol 160: 4951–4960. pmid:9590243
[43]  Braud VM, Allan DS, O'Callaghan CA, Soderstrom K, D'Andrea A, et al. (1998) HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391: 795–799. pmid:9486650
[44]  Shah AH, Sowrirajan B, Davis ZB, Ward JP, Campbell EM, et al. (2010) Degranulation of natural killer cells following interaction with HIV-1-infected cells is hindered by downmodulation of NTB-A by Vpu. Cell Host Microbe 8: 397–409. doi: 10.1016/j.chom.2010.10.008. pmid:21075351
[45]  Bonaparte MI, Barker E (2004) Killing of human immunodeficiency virus-infected primary T-cell blasts by autologous natural killer cells is dependent on the ability of the virus to alter the expression of major histocompatibility complex class I molecules. Blood 104: 2087–2094. pmid:15117765 doi: 10.1182/blood-2004-02-0696
[46]  Romagnani C, Juelke K, Falco M, Morandi B, D'Agostino A, et al. (2007) CD56brightCD16- killer Ig-like receptor- NK cells display longer telomeres and acquire features of CD56dim NK cells upon activation. J Immunol 178: 4947–4955. pmid:17404276 doi: 10.4049/jimmunol.178.8.4947
[47]  Mavilio D, Lombardo G, Benjamin J, Kim D, Follman D, et al. (2005) Characterization of CD56-/CD16+ natural killer (NK) cells: a highly dysfunctional NK subset expanded in HIV-infected viremic individuals. Proc Natl Acad Sci U S A 102: 2886–2891. pmid:15699323 doi: 10.1073/pnas.0409872102
[48]  Farag SS, Caligiuri MA (2006) Human natural killer cell development and biology. Blood Rev 20: 123–137. pmid:16364519 doi: 10.1016/j.blre.2005.10.001
[49]  Guma M, Cabrera C, Erkizia I, Bofill M, Clotet B, et al. (2006) Human cytomegalovirus infection is associated with increased proportions of NK cells that express the CD94/NKG2C receptor in aviremic HIV-1-positive patients. J Infect Dis 194: 38–41. pmid:16741880 doi: 10.1086/504719
[50]  Archin NM, Sung JM, Garrido C, Soriano-Sarabia N, Margolis DM (2014) Eradicating HIV-1 infection: seeking to clear a persistent pathogen. Nat Rev Microbiol 12: 750–764. doi: 10.1038/nrmicro3352. pmid:25402363
[51]  Davis ZB, Ward JP, Barker E (2011) Preparation and Use of HIV-1 Infected Primary CD4+ T-Cells as Target Cells in Natural Killer Cell Cytotoxic Assays. J Vis Exp. doi: 10.3791/2668
[52]  An DS, Xie Y, Mao SH, Morizono K, Kung SK, et al. (2003) Efficient lentiviral vectors for short hairpin RNA delivery into human cells. Hum Gene Ther 14: 1207–1212. pmid:12908971 doi: 10.1089/104303403322168037
[53]  O'Doherty U, Swiggard WJ, Malim MH (2000) Human immunodeficiency virus type 1 spinoculation enhances infection through virus binding. J Virol 74: 10074–10080. pmid:11024136 doi: 10.1128/jvi.74.21.10074-10080.2000
[54]  Lazaro E, Godfrey SB, Stamegna P, Ogbechie T, Kerrigan C, et al. (2009) Differential HIV epitope processing in monocytes and CD4 T cells affects cytotoxic T lymphocyte recognition. J Infect Dis 200: 236–243. doi: 10.1086/599837. pmid:19505257
[55]  Vaithilingam A, Lai NY, Duong E, Boucau J, Xu Y, et al. (2013) A simple methodology to assess endolysosomal protease activity involved in antigen processing in human primary cells. BMC Cell Biol 14: 35. doi: 10.1186/1471-2121-14-35. pmid:23937268

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133