全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Distribution of Prion Protein Allotypes Differs Between Sporadic and Iatrogenic Creutzfeldt-Jakob Disease Patients

DOI: 10.1371/journal.ppat.1005416

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sporadic Creutzfeldt-Jakob disease (sCJD) is the most prevalent of the human prion diseases, which are fatal and transmissible neurodegenerative diseases caused by the infectious prion protein (PrPSc). The origin of sCJD is unknown, although the initiating event is thought to be the stochastic misfolding of endogenous prion protein (PrPC) into infectious PrPSc. By contrast, human growth hormone-associated cases of iatrogenic CJD (iCJD) in the United Kingdom (UK) are associated with exposure to an exogenous source of PrPSc. In both forms of CJD, heterozygosity at residue 129 for methionine (M) or valine (V) in the prion protein gene may affect disease phenotype, onset and progression. However, the relative contribution of each PrPC allotype to PrPSc in heterozygous cases of CJD is unknown. Using mass spectrometry, we determined that the relative abundance of PrPSc with M or V at residue 129 in brain specimens from MV cases of sCJD was highly variable. This result is consistent with PrPC containing an M or V at residue 129 having a similar propensity to misfold into PrPSc thus causing sCJD. By contrast, PrPSc with V at residue 129 predominated in the majority of the UK human growth hormone associated iCJD cases, consistent with exposure to infectious PrPSc containing V at residue 129. In both types of CJD, the PrPSc allotype ratio had no correlation with CJD type, age at clinical onset, or disease duration. Therefore, factors other than PrPSc allotype abundance must influence the clinical progression and phenotype of heterozygous cases of CJD.

References

[1]  Head MW, Ironside JW. Review: Creutzfeldt-Jakob disease: prion protein type, disease phenotype and agent strain. Neuropathol Appl Neurobiol. 2012;38: 296–310. doi: 10.1111/j.1365-2990.2012.01265.x. pmid:22394291
[2]  Ghetti B, Piccardo P, Spillantini MG, Ichimiya Y, Porro M, Perini F, et al. Vascular variant of prion protein cerebral amyloidosis with tau-positive neurofibrillary tangles: the phenotype of the stop codon 145 mutation in PRNP. Proc Natl Acad Sci USA. 1996;93: 744–748. pmid:8570627 doi: 10.1073/pnas.93.2.744
[3]  Gambetti P, Puoti G, Zou WQ. Variably protease-sensitive prionopathy: a novel disease of the prion protein. J Mol Neurosci. 2011;45: 422–424. doi: 10.1007/s12031-011-9543-1. pmid:21584652
[4]  Puoti G, Bizzi A, Forloni G, Safar JG, Tagliavini F, Gambetti P. Sporadic human prion diseases: molecular insights and diagnosis. Lancet Neurol. 2012;11: 618–628. doi: 10.1016/S1474-4422(12)70063-7. pmid:22710755
[5]  Parchi P, Saverioni D. Molecular pathology, classification, and diagnosis of sporadic human prion disease variants. Folia Neuropathol. 2012;50: 20–45. pmid:22505361
[6]  Parchi P, Giese A, Capellari S, Brown P, Schulz-Schaeffer W, Windl O, et al. Classification of sporadic Creutzfeldt-Jakob disease based on molecular and phenotypic analysis of 300 subjects. Ann Neurol. 1999;46: 224–233. pmid:10443888 doi: 10.1002/1531-8249(199908)46:2<224::aid-ana12>3.3.co;2-n
[7]  Hill AF, Joiner S, Wadsworth JD, Sidle KC, Bell JE, Budka H, et al. Molecular classification of sporadic Creutzfeldt-Jakob disease. Brain. 2003;126(Pt 6):1333–46. pmid:12764055 doi: 10.1093/brain/awg125
[8]  Parchi P, de BL, Saverioni D, Cohen ML, Ferrer I, Gambetti P, et al. Consensus classification of human prion disease histotypes allows reliable identification of molecular subtypes: an inter-rater study among surveillance centres in Europe and USA. Acta Neuropathol. 2012;124: 517–529. doi: 10.1007/s00401-012-1002-8. pmid:22744790
[9]  Parchi P, Castellani R, Capellari S, Ghetti B, Young K, Chen SG, et al. Molecular basis of phenotypic variability in sporadic Creutzfeldt-Jakob disease. Ann Neurol. 1996;39: 767–778. pmid:8651649 doi: 10.1002/ana.410390613
[10]  Parchi P, Cescatti M, Notari S, Schulz-Schaeffer WJ, Capellari S, Giese A, et al. Agent strain variation in human prion disease: insights from a molecular and pathological review of the National Institutes of Health series of experimentally transmitted disease. Brain. 2010;133: 3030–3042. doi: 10.1093/brain/awq234. pmid:20823086
[11]  Bishop MT, Will RG, Manson JC. Defining sporadic Creutzfeldt-Jakob disease strains and their transmission properties. Proc Natl Acad Sci USA. 2010;107: 12005–12010. doi: 10.1073/pnas.1004688107. pmid:20547859
[12]  Moda F, Suardi S, Di FG, Indaco A, Limido L, Vimercati C, et al. MM2-thalamic Creutzfeldt-Jakob disease: neuropathological, biochemical and transmission studies identify a distinctive prion strain. Brain Pathol. 2012;22: 662–669. doi: 10.1111/j.1750-3639.2012.00572.x. pmid:22288561
[13]  Hauw JJ, Sazdovitch V, Laplanche JL, Peoc'h K, Kopp N, Kemeny J, et al. Neuropathologic variants of sporadic Creutzfeldt-Jakob disease and codon 129 of PrP gene. Neurology. 2000;54: 1641–1646. pmid:10762506 doi: 10.1212/wnl.54.8.1641
[14]  Goldfarb LG, Petersen RB, Tabaton M, Brown P, LeBlanc AC, Montagna P, et al. Fatal familial insomnia and familial Creutzfeldt-Jakob disease: disease phenotype determined by a DNA polymorphism. Science. 1992;258: 806–808. pmid:1439789 doi: 10.1126/science.1439789
[15]  Palmer MS, Dryden AJ, Hughes JT, Collinge J. Homozygous prion protein genotype predisposes to sporadic Creutzfeldt-Jakob disease. Nature. 1991;352: 340–342. pmid:1677164 doi: 10.1038/352340a0
[16]  Head MW, Bunn TJ, Bishop MT, McLoughlin V, Lowrie S, McKimmie CS, et al. Prion protein heterogeneity in sporadic but not variant Creutzfeldt-Jakob disease: UK cases 1991–2002. Ann Neurol. 2004;55: 851–859. pmid:15174020 doi: 10.1002/ana.20127
[17]  Nurmi MH, Bishop M, Strain L, Brett F, McGuigan C, Hutchison M, et al. The normal population distribution of PRNP codon 129 polymorphism. Acta Neurol Scand. 2003;108: 374–378. pmid:14616310 doi: 10.1034/j.1600-0404.2003.00199.x
[18]  Windl O, Dempster M, Estibeiro JP, Lathe R, de SR, Esmonde T, et al. Genetic basis of Creutzfeldt-Jakob disease in the United Kingdom: a systematic analysis of predisposing mutations and allelic variation in the PRNP gene. Hum Genet. 1996;98: 259–264. pmid:8707291 doi: 10.1007/s004390050204
[19]  Brandel JP, Preece M, Brown P, Croes E, Laplanche JL, Agid Y, et al. Distribution of codon 129 genotype in human growth hormone-treated CJD patients in France and the UK. Lancet. 2003;362: 128–130. pmid:12867116 doi: 10.1016/s0140-6736(03)13867-6
[20]  Rudge P, Jaumuktane Z, Adlard P, Bjurstrom N, Caine D, Lowe J, et al. Iatrogenic CJD due to pituitary-derived growth hormone with genetically determined incubation times of up to 40 years. Brain. 2015. Epub 2015/08/14. doi: 10.1093/brain/awv235
[21]  Kim C, Haldiman T, Cohen Y, Chen W, Blevins J, Sy MS, et al. Protease-sensitive conformers in broad spectrum of distinct PrPSc structures in sporadic Creutzfeldt-Jakob disease are indicator of progression rate. PLoS Pathog. 2011;7: e1002242. doi: 10.1371/journal.ppat.1002242. pmid:21931554
[22]  Cali I, Castellani R, Alshekhlee A, Cohen Y, Blevins J, Yuan J, et al. Co-existence of scrapie prion protein types 1 and 2 in sporadic Creutzfeldt-Jakob disease: its effect on the phenotype and prion-type characteristics. Brain. 2009;132: 2643–58. doi: 10.1093/brain/awp196. pmid:19734292
[23]  Kobayashi A, Iwasaki Y, Otsuka H, Yamada M, Yoshida M, Matsuura Y, et al. Deciphering the pathogenesis of sporadic Creutzfeldt-Jakob disease with codon 129 M/V and type 2 abnormal prion protein. Acta Neuropathol Comm. 2013;1: 74. doi: 10.1186/2051-5960-1-74
[24]  Silvestrini MC, Cardone F, Maras B, Pucci P, Barra D, Brunori M, et al. Identification of the prion protein allotypes which accumulate in the brain of sporadic and familial Creutzfeldt-Jakob disease patients. Nat Med. 1997;3: 521–525. pmid:9142120 doi: 10.1038/nm0597-521
[25]  Zanusso G, Polo A, Farinazzo A, Nonno R, Cardone F, Di BM, et al. Novel prion protein conformation and glycotype in Creutzfeldt-Jakob disease. Arch Neurol. 2007;64: 595–599. pmid:17420324 doi: 10.1001/archneur.64.4.595
[26]  Prusiner SB, Scott M, Foster D, Pan KM, Groth D, Mirenda C, et al. Transgenetic studies implicate interactions between homologous PrP isoforms in scrapie prion replication. Cell. 1990;63: 673–686. pmid:1977523 doi: 10.1016/0092-8674(90)90134-z
[27]  Barron RM, Baybutt H, Tuzi NL, McCormack J, King D, Moore RC, et al. Polymorphisms at codons 108 and 189 in murine PrP play distinct roles in the control of scrapie incubation time. J Gen Virol. 2005;86: 859–868. pmid:15722549 doi: 10.1099/vir.0.80525-0
[28]  Moore RA, Timmes A, Wilmarth PA, Priola SA. Comparative profiling of highly enriched 22L and Chandler mouse scrapie prion protein preparations. Proteomics. 2010;10: 2858–2869. doi: 10.1002/pmic.201000104. pmid:20518029
[29]  Moore RA, Timmes AG, Wilmarth PA, Safronetz D, Priola SA. Identification and removal of proteins that co-purify with infectious prion protein improves the analysis of its secondary structure. Proteomics. 2011;11: 3853–3865. doi: 10.1002/pmic.201100253. pmid:21805638
[30]  Morel N, Andreoletti O, Grassi J, Clement G. Absolute and relative quantification of sheep brain prion protein (PrP) allelic variants by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2007;21: 4093–4100. pmid:18008391 doi: 10.1002/rcm.3317
[31]  Liu H, Sadygov RG, Yates JR III. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem. 2004;76: 4193–4201. pmid:15253663 doi: 10.1021/ac0498563
[32]  Lundgren DH, Hwang SI, Wu L, Han DK. Role of spectral counting in quantitative proteomics. Expert Rev Proteomics. 2010;7: 39–53. doi: 10.1586/epr.09.69. pmid:20121475
[33]  Parchi P, Notari S, Weber P, Schimmel H, Budka H, Ferrer I, et al. Inter-laboratory assessment of PrPSc typing in creutzfeldt-jakob disease: a Western blot study within the NeuroPrion Consortium. Brain Pathol. 2009;19: 384–391. doi: 10.1111/j.1750-3639.2008.00187.x. pmid:18624793
[34]  Bell JE, Gentleman SM, Ironside JW, McCardle L, Lantos PL, Doey L, et al. Prion protein immunocytochemistry—UK five centre consensus report. Neuropathol Appl Neurobiol. 1997;23: 26–35. pmid:9061687 doi: 10.1046/j.1365-2990.1997.7398073.x
[35]  Priola SA, Chesebro B. A single hamster amino acid blocks conversion to protease-resistant PrP in scrapie-infected mouse neuroblastoma cells. J Virol. 1995;69: 7754–7758. pmid:7494285
[36]  Jones M, Peden AH, Prowse CV, Groner A, Manson JC, Turner ML, et al. In vitro amplification and detection of variant Creutzfeldt-Jakob disease PrPSc. J Pathol. 2007;213: 21–26. pmid:17614097 doi: 10.1002/path.2204
[37]  Jones M, Peden AH, Wight D, Prowse C, Macgregor I, Manson J, et al. Effects of human PrPSc type and PRNP genotype in an in-vitro conversion assay. Neuroreport. 2008;19: 1783–1786. doi: 10.1097/WNR.0b013e328318edfa. pmid:18955905
[38]  Manson JC, Jamieson E, Baybutt H, Tuzi NL, Barron R, McConnell I, et al. A single amino acid alteration (101L) introduced into murine PrP dramatically alters incubation time of transmissible spongiform encephalopathy. EMBO J. 1999;18: 6855–6864. pmid:10581259 doi: 10.1093/emboj/18.23.6855
[39]  Tan BC, Blanco AR, Houston EF, Stewart P, Goldmann W, Gill AC, et al. Significant differences in incubation times in sheep infected with bovine spongiform encephalopathy result from variation at codon 141 in the PRNP gene. J Gen Virol. 2012;93: 2749–2756. doi: 10.1099/vir.0.039008-0. pmid:22971821
[40]  Barbanti P, Fabbrini G, Salvatore M, Petraroli R, Cardone F, Maras B, et al. Polymorphism at codon 129 or codon 219 of PRNP and clinical heterogeneity in a previously unreported family with Gerstmann-Straussler-Scheinker disease(PrP-P102L mutation). Neurology. 1996;47: 734–741. pmid:8797472 doi: 10.1212/wnl.47.3.734
[41]  Kobayashi A, Teruya K, Matsuura Y, Shirai T, Nakamura Y, Yamada M, et al. The influence of PRNP polymorphisms on human prion disease susceptibility: an update. Acta Neuropathol. 2015;130: 159–170. doi: 10.1007/s00401-015-1447-7. pmid:26022925
[42]  Tahiri-Alaoui A, Gill AC, Disterer P, James W. Methionine 129 variant of human prion protein oligomerizes more rapidly than the valine 129 variant: implications for disease susceptibility to Creutzfeldt-Jakob disease. J Biol Chem. 2004;279: 31390–31397. pmid:15131108 doi: 10.1074/jbc.m401754200
[43]  Lewis PA, Tattum MH, Jones S, Bhelt D, Batchelor M, Clarke AR, et al. Codon 129 polymorphism of the human prion protein influences the kinetics of amyloid formation. J GenVirol. 2006;87: 2443–2449. doi: 10.1099/vir.0.81630-0
[44]  Baskakov I, Disterer P, Breydo L, Shaw M, Gill A, James W, et al. The presence of valine at residue 129 in human prion protein accelerates amyloid formation. FEBS Lett. 2005;579:2589–2596. pmid:15862295 doi: 10.1016/j.febslet.2005.03.075
[45]  Hosszu LL, Jackson GS, Trevitt CR, Jones S, Batchelor M, Bhelt D, et al. The residue 129 polymorphism in human prion protein does not confer susceptibility to Creutzfeldt-Jakob disease by altering the structure or global stability of PrPC. J Biol Chem. 2004;279: 28515–28521. pmid:15123682 doi: 10.1074/jbc.m313762200
[46]  Apostol MI, Sawaya MR, Cascio D, Eisenberg D. Crystallographic studies of prion protein (PrP) segments suggest how structural changes encoded by polymorphism at residue 129 modulate susceptibility to human prion disease. J Biol Chem. 2010;285: 29671–29675. doi: 10.1074/jbc.C110.158303. pmid:20685658
[47]  Kobayashi A, Asano M, Mohri S, Kitamoto T. A traceback phenomenon can reveal the origin of prion infection. Neuropathology. 2009;29:619–624. doi: 10.1111/j.1440-1789.2008.00973.x. pmid:19659941
[48]  Kobayashi A, Parchi P, Yamada M, Brown P, Saverioni D, Matsuura Y, et al. Transmission properties of atypical Creutzfeldt-Jakob disease: a clue to disease etiology? J Virol. 2015;89: 3939–3946. doi: 10.1128/JVI.03183-14. pmid:25609817
[49]  Atarashi R, Moore RA, Sim VL, Hughson AG, Dorward DW, Onwubiko HA, et al. Ultrasensitive detection of scrapie prion protein using seeded conversion of recombinant prion protein. Nat Methods. 2007;4: 645–650. pmid:17643109 doi: 10.1038/nmeth1066
[50]  Wadsworth JD, Joiner S, Hill AF, Campbell TA, Desbruslais M, Luthert PJ, et al. Tissue distribution of protease resistant prion protein in variant Creutzfeldt-Jakob disease using a highly sensitive immunoblotting assay. Lancet. 2001;358: 171–180. pmid:11476832 doi: 10.1016/s0140-6736(01)05403-4
[51]  Birkmann E, Schafer O, Weinmann N, Dumpitak C, Beekes M, Jackman R, et al. Detection of prion particles in samples of BSE and scrapie by fluorescence correlation spectroscopy without proteinase K digestion. Biol Chem. 2006;387: 95–102. pmid:16497169 doi: 10.1515/bc.2006.013
[52]  Weatherly DB, Atwood JA III, Minning TA, Cavola C, Tarleton RL, Orlando R. A Heuristic method for assigning a false-discovery rate for protein identifications from Mascot database search results. Mol Cell Proteomics. 2005;4: 762–772. pmid:15703444 doi: 10.1074/mcp.m400215-mcp200
[53]  Old WM, Meyer-Arendt K, veline-Wolf L, Pierce KG, Mendoza A, Sevinsky JR, et al. Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics. 2005;4:1487–1502. pmid:15979981 doi: 10.1074/mcp.m500084-mcp200

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133