全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Coordinated Bacteriocin Expression and Competence in Streptococcus pneumoniae Contributes to Genetic Adaptation through Neighbor Predation

DOI: 10.1371/journal.ppat.1005413

Full-Text   Cite this paper   Add to My Lib

Abstract:

Streptococcus pneumoniae (pneumococcus) has remained a persistent cause of invasive and mucosal disease in humans despite the widespread use of antibiotics and vaccines. The resilience of this organism is due to its capacity for adaptation through the uptake and incorporation of new genetic material from the surrounding microbial community. DNA uptake and recombination is controlled by a tightly regulated quorum sensing system that is triggered by the extracellular accumulation of competence stimulating peptide (CSP). In this study, we demonstrate that CSP can stimulate the production of a diverse array of blp bacteriocins. This cross stimulation occurs through increased production and secretion of the bacteriocin pheromone, BlpC, and requires a functional competence regulatory system. We show that a highly conserved motif in the promoter of the operon encoding BlpC and its transporter mediates the upregulation by CSP. The accumulation of BlpC following CSP stimulation results in augmented activation of the entire blp locus. Using biofilm-grown organisms as a model for competition and genetic exchange on the mucosal surface, we demonstrate that DNA exchange is enhanced by bacteriocin secretion suggesting that co-stimulation of bacteriocins with competence provides an adaptive advantage. The blp and com regulatory pathways are believed to have diverged and specialized in a remote ancestor of pneumococcus. Despite this, the two systems have maintained a regulatory connection that promotes competition and adaptation by targeting for lysis a wide array of potential competitors while simultaneously providing the means for incorporation of their DNA.

References

[1]  Croucher NJ, Harris SR, Fraser C, Quail MA, Burton J, et al. (2011) Rapid pneumococcal evolution in response to clinical interventions. Science 331: 430–434. doi: 10.1126/science.1198545. pmid:21273480
[2]  Croucher NJ, Kagedan L, Thompson CM, Parkhill J, Bentley SD, et al. (2015) Selective and genetic constraints on pneumococcal serotype switching. PLoS Genet 11: e1005095. doi: 10.1371/journal.pgen.1005095. pmid:25826208
[3]  Jensen A, Valdorsson O, Frimodt-Moller N, Hollingshead S, Kilian M (2015) Commensal Streptococci Serve as a Reservoir for beta-Lactam Resistance Genes in Streptococcus pneumoniae. Antimicrob Agents Chemother 59: 3529–3540. doi: 10.1128/AAC.00429-15. pmid:25845880
[4]  Donati C, Hiller NL, Tettelin H, Muzzi A, Croucher NJ, et al. (2010) Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species. Genome Biol 11: R107. doi: 10.1186/gb-2010-11-10-r107. pmid:21034474
[5]  Cheng Q, Campbell EA, Naughton AM, Johnson S, Masure HR (1997) The com locus controls genetic transformation in Streptococcus pneumoniae. Mol Microbiol 23: 683–692. pmid:9157240 doi: 10.1046/j.1365-2958.1997.2481617.x
[6]  Peterson SN, Sung CK, Cline R, Desai BV, Snesrud EC, et al. (2004) Identification of competence pheromone responsive genes in Streptococcus pneumoniae by use of DNA microarrays. Mol Microbiol 51: 1051–1070. pmid:14763980 doi: 10.1046/j.1365-2958.2003.03907.x
[7]  Croucher NJ, Hanage WP, Harris SR, McGee L, van der Linden M, et al. (2014) Variable recombination dynamics during the emergence, transmission and 'disarming' of a multidrug-resistant pneumococcal clone. BMC Biol 12: 49. doi: 10.1186/1741-7007-12-49. pmid:24957517
[8]  Havarstein LS, Coomaraswamy G, Morrison DA (1995) An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc Natl Acad Sci U S A 92: 11140–11144. pmid:7479953 doi: 10.1073/pnas.92.24.11140
[9]  Havarstein LS, Diep DB, Nes IF (1995) A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol Microbiol 16: 229–240. pmid:7565085 doi: 10.1111/j.1365-2958.1995.tb02295.x
[10]  Hui FM, Zhou L, Morrison DA (1995) Competence for genetic transformation in Streptococcus pneumoniae: organization of a regulatory locus with homology to two lactococcin A secretion genes. Gene 153: 25–31. pmid:7883181 doi: 10.1016/0378-1119(94)00841-f
[11]  Pestova EV, Havarstein LS, Morrison DA (1996) Regulation of competence for genetic transformation in Streptococcus pneumoniae by an auto-induced peptide pheromone and a two-component regulatory system. Mol Microbiol 21: 853–862. pmid:8878046 doi: 10.1046/j.1365-2958.1996.501417.x
[12]  Ween O, Gaustad P, Havarstein LS (1999) Identification of DNA binding sites for ComE, a key regulator of natural competence in Streptococcus pneumoniae. Mol Microbiol 33: 817–827. pmid:10447890 doi: 10.1046/j.1365-2958.1999.01528.x
[13]  Wei H, Havarstein LS (2012) Fratricide is essential for efficient gene transfer between pneumococci in biofilms. Appl Environ Microbiol. doi: 10.1128/aem.01343-12
[14]  Eldholm V, Johnsborg O, Haugen K, Ohnstad HS, Havarstein LS (2009) Fratricide in Streptococcus pneumoniae: contributions and role of the cell wall hydrolases CbpD, LytA and LytC. Microbiology 155: 2223–2234. doi: 10.1099/mic.0.026328-0. pmid:19389766
[15]  Eldholm V, Johnsborg O, Straume D, Ohnstad HS, Berg KH, et al. (2010) Pneumococcal CbpD is a murein hydrolase that requires a dual cell envelope binding specificity to kill target cells during fratricide. Mol Microbiol 76: 905–917. doi: 10.1111/j.1365-2958.2010.07143.x. pmid:20384696
[16]  Claverys JP, Martin B, Havarstein LS (2007) Competence-induced fratricide in streptococci. Mol Microbiol 64: 1423–1433. pmid:17555432 doi: 10.1111/j.1365-2958.2007.05757.x
[17]  Pozzi G, Masala L, Iannelli F, Manganelli R, Havarstein LS, et al. (1996) Competence for genetic transformation in encapsulated strains of Streptococcus pneumoniae: two allelic variants of the peptide pheromone. J Bacteriol 178: 6087–6090. pmid:8830714
[18]  Ramirez M, Morrison DA, Tomasz A (1997) Ubiquitous distribution of the competence related genes comA and comC among isolates of Streptococcus pneumoniae. Microb Drug Resist 3: 39–52. pmid:9109095 doi: 10.1089/mdr.1997.3.39
[19]  Whatmore AM, Barcus VA, Dowson CG (1999) Genetic diversity of the streptococcal competence (com) gene locus. J Bacteriol 181: 3144–3154. pmid:10322016
[20]  de Saizieu A, Gardes C, Flint N, Wagner C, Kamber M, et al. (2000) Microarray-based identification of a novel Streptococcus pneumoniae regulon controlled by an autoinduced peptide. J Bacteriol 182: 4696–4703. pmid:10940007 doi: 10.1128/jb.182.17.4696-4703.2000
[21]  Reichmann P, Hakenbeck R (2000) Allelic variation in a peptide-inducible two-component system of Streptococcus pneumoniae. FEMS Microbiol Lett 190: 231–236. pmid:11034284 doi: 10.1111/j.1574-6968.2000.tb09291.x
[22]  Pinchas MD, LaCross NC, Dawid S (2015) An electrostatic interaction between BlpC and BlpH dictates pheromone specificity in the control of bacteriocin production and immunity in Streptococcus pneumoniae. J Bacteriol 197: 1236–1248. doi: 10.1128/JB.02432-14. pmid:25622617
[23]  Lux T, Nuhn M, Hakenbeck R, Reichmann P (2007) Diversity of bacteriocins and activity spectrum in Streptococcus pneumoniae. J Bacteriol 189: 7741–7751. pmid:17704229 doi: 10.1128/jb.00474-07
[24]  Son MR, Shchepetov M, Adrian PV, Madhi SA, de Gouveia L, et al. (2011) Conserved mutations in the pneumococcal bacteriocin transporter gene, blpA, result in a complex population consisting of producers and cheaters. MBio 2. doi: 10.1128/mbio.00179-11
[25]  Stevens KE, Chang D, Zwack EE, Sebert ME (2011) Competence in Streptococcus pneumoniae is regulated by the rate of ribosomal decoding errors. MBio 2. doi: 10.1128/mbio.00071-11
[26]  Kochan TJ, Dawid S (2013) The HtrA protease of Streptococcus pneumoniae controls density-dependent stimulation of the bacteriocin blp locus via disruption of pheromone secretion. J Bacteriol 195: 1561–1572. doi: 10.1128/JB.01964-12. pmid:23354751
[27]  Maricic N, Dawid S (2014) Using the overlay assay to qualitatively measure bacterial production of and sensitivity to pneumococcal bacteriocins. J Vis Exp: e51876. doi: 10.3791/51876. pmid:25350516
[28]  Kowalko JE, Sebert ME (2008) The Streptococcus pneumoniae competence regulatory system influences respiratory tract colonization. Infect Immun 76: 3131–3140. doi: 10.1128/IAI.01696-07. pmid:18443092
[29]  Miller J (1992) A Short Course in Bacterial Genetics. A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
[30]  Davey L, Halperin SA, Lee SF (2015) Immunoblotting conditions for small peptides from streptococci. J Microbiol Methods 114: 40–42. doi: 10.1016/j.mimet.2015.04.015. pmid:25937086
[31]  Marks LR, Reddinger RM, Hakansson AP (2012) High levels of genetic recombination during nasopharyngeal carriage and biofilm formation in Streptococcus pneumoniae. MBio 3. doi: 10.1128/mbio.00200-12
[32]  Knutsen E, Ween O, Havarstein LS (2004) Two separate quorum-sensing systems upregulate transcription of the same ABC transporter in Streptococcus pneumoniae. J Bacteriol 186: 3078–3085. pmid:15126469 doi: 10.1128/jb.186.10.3078-3085.2004
[33]  Gagne AL, Stevens KE, Cassone M, Pujari A, Abiola OE, et al. (2013) Competence in Streptococcus pneumoniae is a response to an increasing mutational burden. PLoS One 8: e72613. doi: 10.1371/journal.pone.0072613. pmid:23967325
[34]  Chewapreecha C, Harris SR, Croucher NJ, Turner C, Marttinen P, et al. (2014) Dense genomic sampling identifies highways of pneumococcal recombination. Nat Genet 46: 305–309. doi: 10.1038/ng.2895. pmid:24509479
[35]  Piotrowski A, Luo P, Morrison DA (2009) Competence for genetic transformation in Streptococcus pneumoniae: termination of activity of the alternative sigma factor ComX is independent of proteolysis of ComX and ComW. J Bacteriol 191: 3359–3366. doi: 10.1128/JB.01750-08. pmid:19286798
[36]  Yano M, Gohil S, Coleman JR, Manix C, Pirofski LA (2011) Antibodies to Streptococcus pneumoniae capsular polysaccharide enhance pneumococcal quorum sensing. MBio 2. doi: 10.1128/mbio.00176-11
[37]  Dufour D, Cordova M, Cvitkovitch DG, Levesque CM (2011) Regulation of the competence pathway as a novel role associated with a streptococcal bacteriocin. J Bacteriol 193: 6552–6559. doi: 10.1128/JB.05968-11. pmid:21984782
[38]  Kreth J, Merritt J, Shi W, Qi F (2005) Co-ordinated bacteriocin production and competence development: a possible mechanism for taking up DNA from neighbouring species. Mol Microbiol 57: 392–404. pmid:15978073 doi: 10.1111/j.1365-2958.2005.04695.x
[39]  Martin B, Quentin Y, Fichant G, Claverys JP (2006) Independent evolution of competence regulatory cascades in streptococci? Trends Microbiol 14: 339–345. pmid:16820295 doi: 10.1016/j.tim.2006.06.007

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133