[1] | Epstein MA, Achong BG, & Barr YM (1964) Virus Particles in Cultured Lymphoblasts from Burkitt's Lymphoma. Lancet 1(7335):702–703. pmid:14107961 doi: 10.1016/s0140-6736(64)91524-7
|
[2] | Klein E, Kis LL, & Klein G (2007) Epstein-Barr virus infection in humans: from harmless to life endangering virus-lymphocyte interactions. Oncogene 26(9):1297–1305. pmid:17322915 doi: 10.1038/sj.onc.1210240
|
[3] | Rickinson AB & Kieff E (1996) Epstein-Barr virus. Fields virology, eds Field BN, Knipe DM, & Howley PM (Lippincott-Raven Publishers, Philadelphia, Pa.), 3rd Ed, pp 2397–2446.
|
[4] | Allday MJ, Crawford DH, & Griffin BE (1989) Epstein-Barr virus latent gene expression during the initiation of B cell immortalization. J Gen Virol 70 (Pt 7):1755–1764. pmid:2544663 doi: 10.1099/0022-1317-70-7-1755
|
[5] | Rooney C, Howe JG, Speck SH, & Miller G (1989) Influence of Burkitt's lymphoma and primary B cells on latent gene expression by the nonimmortalizing P3J-HR-1 strain of Epstein-Barr virus. J Virol 63(4):1531–1539. pmid:2538644
|
[6] | Sinclair AJ, Palmero I, Peters G, & Farrell PJ (1994) EBNA-2 and EBNA-LP cooperate to cause G0 to G1 transition during immortalization of resting human B lymphocytes by Epstein-Barr virus. EMBO J 13(14):3321–3328. pmid:8045261
|
[7] | Zimber-Strobl U & Strobl LJ (2001) EBNA2 and Notch signalling in Epstein-Barr virus mediated immortalization of B lymphocytes. Seminars in cancer biology 11(6):423–434. pmid:11669604 doi: 10.1006/scbi.2001.0409
|
[8] | Wang L, Grossman SR, & Kieff E (2000) Epstein-Barr virus nuclear protein 2 interacts with p300, CBP, and PCAF histone acetyltransferases in activation of the LMP1 promoter. Proc Natl Acad Sci U S A 97(1):430–435. pmid:10618435 doi: 10.1073/pnas.97.1.430
|
[9] | Tong X, Drapkin R, Reinberg D, & Kieff E (1995) The 62- and 80-kDa subunits of transcription factor IIH mediate the interaction with Epstein-Barr virus nuclear protein 2. Proc Natl Acad Sci U S A 92(8):3259–3263. pmid:7724549 doi: 10.1073/pnas.92.8.3259
|
[10] | Tong X, Drapkin R, Yalamanchili R, Mosialos G, & Kieff E (1995) The Epstein-Barr virus nuclear protein 2 acidic domain forms a complex with a novel cellular coactivator that can interact with TFIIE. Mol Cell Biol 15(9):4735–4744. pmid:7651391 doi: 10.1128/mcb.15.9.4735
|
[11] | Tong X, Wang F, Thut CJ, & Kieff E (1995) The Epstein-Barr virus nuclear protein 2 acidic domain can interact with TFIIB, TAF40, and RPA70 but not with TATA-binding protein. J Virol 69(1):585–588. pmid:7983760
|
[12] | Ling PD, Ryon JJ, & Hayward SD (1993) EBNA-2 of herpesvirus papio diverges significantly from the type A and type B EBNA-2 proteins of Epstein-Barr virus but retains an efficient transactivation domain with a conserved hydrophobic motif. J Virol 67(6):2990–3003. pmid:8388484
|
[13] | Harada S & Kieff E (1997) Epstein-Barr virus nuclear protein LP stimulates EBNA-2 acidic domain-mediated transcriptional activation. J Virol 71(9):6611–6618. pmid:9261383
|
[14] | Nitsche F, Bell A, & Rickinson A (1997) Epstein-Barr virus leader protein enhances EBNA-2-mediated transactivation of latent membrane protein 1 expression: a role for the W1W2 repeat domain. J Virol 71(9):6619–6628. pmid:9261384
|
[15] | Ling PD, Rawlins DR, & Hayward SD (1993) The Epstein-Barr virus immortalizing protein EBNA-2 is targeted to DNA by a cellular enhancer-binding protein. Proc Natl Acad Sci U S A 90(20):9237–9241. pmid:8415684 doi: 10.1073/pnas.90.20.9237
|
[16] | Zhou S, Fujimuro M, Hsieh JJ, Chen L, & Hayward SD (2000) A role for SKIP in EBNA2 activation of CBF1-repressed promoters. J Virol 74(4):1939–1947. pmid:10644367 doi: 10.1128/jvi.74.4.1939-1947.2000
|
[17] | Peng CW, et al. (2004) Direct interactions between Epstein-Barr virus leader protein LP and the EBNA2 acidic domain underlie coordinate transcriptional regulation. Proc Natl Acad Sci U S A 101(4):1033–1038. pmid:14732686 doi: 10.1073/pnas.0307808100
|
[18] | Peng CW, Zhao B, & Kieff E (2004) Four EBNA2 domains are important for EBNALP coactivation. J Virol 78(20):11439–11442. pmid:15452270 doi: 10.1128/jvi.78.20.11439-11442.2004
|
[19] | Guo R, et al. (2014) BS69/ZMYND11 reads and connects histone H3.3 lysine 36 trimethylation-decorated chromatin to regulated pre-mRNA processing. Mol Cell 56(2):298–310. doi: 10.1016/j.molcel.2014.08.022. pmid:25263594
|
[20] | Ladendorff NE, Wu S, & Lipsick JS (2001) BS69, an adenovirus E1A-associated protein, inhibits the transcriptional activity of c-Myb. Oncogene 20(1):125–132. pmid:11244510 doi: 10.1038/sj.onc.1204048
|
[21] | Wen H, et al. (2014) ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression. Nature 508(7495):263–268. doi: 10.1038/nature13045. pmid:24590075
|
[22] | Ansieau S & Leutz A (2002) The conserved Mynd domain of BS69 binds cellular and oncoviral proteins through a common PXLXP motif. J Biol Chem 277(7):4906–4910. pmid:11733528 doi: 10.1074/jbc.m110078200
|
[23] | Hateboer G, et al. (1995) BS69, a novel adenovirus E1A-associated protein that inhibits E1A transactivation. EMBO J 14(13):3159–3169. pmid:7621829
|
[24] | Masselink H & Bernards R (2000) The adenovirus E1A binding protein BS69 is a corepressor of transcription through recruitment of N-CoR. Oncogene 19(12):1538–1546. pmid:10734313 doi: 10.1038/sj.onc.1203421
|
[25] | Velasco G, Grkovic S, & Ansieau S (2006) New insights into BS69 functions. J Biol Chem 281(24):16546–16550. pmid:16565076 doi: 10.1074/jbc.m600573200
|
[26] | Menezes J, Leibold W, Klein G, & Clements G (1975) Establishment and characterization of an Epstein-Barr virus (EBC)- negative lymphoblastoid B cell line (BJA-B) from an exceptional, EBV- genome-negative African Burkitt's lymphoma. Biomedicine 22(4):276–284. pmid:179629
|
[27] | McDonnell AV, Jiang T, Keating AE, & Berger B (2006) Paircoil2: improved prediction of coiled coils from sequence. Bioinformatics 22(3):356–358. pmid:16317077 doi: 10.1093/bioinformatics/bti797
|
[28] | Kateb F, et al. (2013) Structural and functional analysis of the DEAF-1 and BS69 MYND domains. PloS one 8(1):e54715. doi: 10.1371/journal.pone.0054715. pmid:23372760
|
[29] | Liu Y, et al. (2007) Structural basis for recognition of SMRT/N-CoR by the MYND domain and its contribution to AML1/ETO's activity. Cancer Cell 11(6):483–497. pmid:17560331 doi: 10.1016/j.ccr.2007.04.010
|
[30] | Matthews JM, et al. (2009) It takes two to tango: the structure and function of LIM, RING, PHD and MYND domains. Current pharmaceutical design 15(31):3681–3696. pmid:19925420 doi: 10.2174/138161209789271861
|
[31] | Zhao B, et al. (2011) Epstein-Barr virus exploits intrinsic B-lymphocyte transcription programs to achieve immortal cell growth. Proc Natl Acad Sci U S A 108(36):14902–14907. doi: 10.1073/pnas.1108892108. pmid:21746931
|
[32] | Takada K, et al. (1991) An Epstein-Barr virus-producer line Akata: establishment of the cell line and analysis of viral DNA. Virus genes 5(2):147–156. pmid:1647567 doi: 10.1007/bf00571929
|
[33] | Abbot SD, et al. (1990) Epstein-Barr virus nuclear antigen 2 induces expression of the virus-encoded latent membrane protein. J Virol 64(5):2126–2134. pmid:2157875
|
[34] | Wang F, Tsang SF, Kurilla MG, Cohen JI, & Kieff E (1990) Epstein-Barr virus nuclear antigen 2 transactivates latent membrane protein LMP1. J Virol 64(7):3407–3416. pmid:2352328
|
[35] | Sung NS, Kenney S, Gutsch D, & Pagano JS (1991) EBNA-2 transactivates a lymphoid-specific enhancer in the BamHI C promoter of Epstein-Barr virus. J Virol 65(5):2164–2169. pmid:1850003 doi: 10.1007/978-1-4612-0405-3_7
|
[36] | Woisetschlaeger M, Yandava CN, Furmanski LA, Strominger JL, & Speck SH (1990) Promoter switching in Epstein-Barr virus during the initial stages of infection of B lymphocytes. Proc Natl Acad Sci U S A 87(5):1725–1729. pmid:2155423 doi: 10.1073/pnas.87.5.1725
|
[37] | Cohen JI & Kieff E (1991) An Epstein-Barr virus nuclear protein 2 domain essential for transformation is a direct transcriptional activator. J Virol 65(11):5880–5885. pmid:1656076
|
[38] | Wang YL, Faiola F, Xu M, Pan S, & Martinez E (2008) Human ATAC Is a GCN5/PCAF-containing acetylase complex with a novel NC2-like histone fold module that interacts with the TATA-binding protein. J Biol Chem 283(49):33808–33815. doi: 10.1074/jbc.M806936200. pmid:18838386
|
[39] | Yalamanchili R, et al. (1994) Genetic and biochemical evidence that EBNA 2 interaction with a 63-kDa cellular GTG-binding protein is essential for B lymphocyte growth transformation by EBV. Virology 204(2):634–641. pmid:7941331 doi: 10.1006/viro.1994.1578
|
[40] | Banaszynski LA, Chen LC, Maynard-Smith LA, Ooi AG, & Wandless TJ (2006) A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126(5):995–1004. pmid:16959577 doi: 10.1016/j.cell.2006.07.025
|
[41] | Guo R, et al. (2014) BS69/ZMYND11 Reads and Connects Histone H3.3 Lysine 36 Trimethylation-Decorated Chromatin to Regulated Pre-mRNA Processing. Mol Cell. doi: 10.1016/j.molcel.2014.08.022
|
[42] | Wan J, et al. (2006) BS69, a specific adaptor in the latent membrane protein 1-mediated c-Jun N-terminal kinase pathway. Mol Cell Biol 26(2):448–456. pmid:16382137 doi: 10.1128/mcb.26.2.448-456.2006
|
[43] | Liu Y, et al. (2006) The tetramer structure of the Nervy homology two domain, NHR2, is critical for AML1/ETO's activity. Cancer Cell 9(4):249–260. pmid:16616331 doi: 10.1016/j.ccr.2006.03.012
|
[44] | Sun XJ, et al. (2013) A stable transcription factor complex nucleated by oligomeric AML1-ETO controls leukaemogenesis. Nature 500(7460):93–97. doi: 10.1038/nature12287. pmid:23812588
|
[45] | Cubeddu L, Joseph S, Richard DJ, & Matthews JM (2012) Contribution of DEAF1 structural domains to the interaction with the breast cancer oncogene LMO4. PloS one 7(6):e39218. doi: 10.1371/journal.pone.0039218. pmid:22723967
|
[46] | Cobben JM, et al. (2014) A de novo mutation in ZMYND11, a candidate gene for 10p15.3 deletion syndrome, is associated with syndromic intellectual disability. European journal of medical genetics 57(11–12):636–638. doi: 10.1016/j.ejmg.2014.09.002. pmid:25281490
|
[47] | Coe BP, et al. (2014) Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nat Genet 46(10):1063–1071. doi: 10.1038/ng.3092. pmid:25217958
|
[48] | Miller G, Shope T, Lisco H, Stitt D, & Lipman M (1972) Epstein-Barr virus: transformation, cytopathic changes, and viral antigens in squirrel monkey and marmoset leukocytes. Proc Natl Acad Sci U S A 69(2):383–387. pmid:4333982 doi: 10.1073/pnas.69.2.383
|
[49] | Given D & Kieff E (1978) DNA of Epstein-Barr virus. IV. Linkage map of restriction enzyme fragments of the B95-8 and W91 strains of Epstein-Barr Virus. J Virol 28(2):524–542. pmid:214576
|
[50] | Adams PD, et al. (2002) PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 58(Pt 11):1948–1954. pmid:12393927 doi: 10.1107/s0907444902016657
|
[51] | Emsley P & Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60(Pt 12 Pt 1):2126–2132. pmid:15572765 doi: 10.1107/s0907444904019158
|
[52] | Liu CD, et al. (2012) The nuclear chaperone nucleophosmin escorts an epstein-barr virus nuclear antigen to establish transcriptional cascades for latent infection in human B cells. PLoS Pathog 8(12):e1003084. doi: 10.1371/journal.ppat.1003084. pmid:23271972
|
[53] | Chen YL, et al. (2014) Nucleolin is important for Epstein-Barr virus nuclear antigen 1-mediated episome binding, maintenance, and transcription. Proc Natl Acad Sci U S A 111(1):243–248. doi: 10.1073/pnas.1321800111. pmid:24344309
|
[54] | Liu X, Tesfai J, Evrard YA, Dent SY, & Martinez E (2003) c-Myc transformation domain recruits the human STAGA complex and requires TRRAP and GCN5 acetylase activity for transcription activation. J Biol Chem 278(22):20405–20412. pmid:12660246 doi: 10.1074/jbc.m211795200
|
[55] | Peng CW, et al. (2007) Hsp72 up-regulates Epstein-Barr virus EBNALP coactivation with EBNA2. Blood 109(12):5447–5454. pmid:17341665 doi: 10.1182/blood-2006-08-040634
|