全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

BS69/ZMYND11 C-Terminal Domains Bind and Inhibit EBNA2

DOI: 10.1371/journal.ppat.1005414

Full-Text   Cite this paper   Add to My Lib

Abstract:

Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA2) plays an important role in driving immortalization of EBV-infected B cells through regulating the expression of many viral and cellular genes. We report a structural study of the tumor suppressor BS69/ZMYND11 C-terminal region, comprised of tandem coiled-coil-MYND domains (BS69CC-MYND), in complex with an EBNA2 peptide containing a PXLXP motif. The coiled-coil domain of BS69 self-associates to bring two separate MYND domains in close proximity, thereby enhancing the BS69 MYND-EBNA2 interaction. ITC analysis of BS69CC-MYND with a C-terminal fragment of EBNA2 further suggests that the BS69CC-MYND homodimer synergistically binds to the two EBNA2 PXLXP motifs that are respectively located in the conserved regions CR7 and CR8. Furthermore, we showed that EBNA2 interacts with BS69 and down-regulates its expression at both mRNA and protein levels in EBV-infected B cells. Ectopic BS69CC-MYND is recruited to viral target promoters through interactions with EBNA2, inhibits EBNA2-mediated transcription activation, and impairs proliferation of lymphoblastoid cell lines (LCLs). Substitution of critical residues in the MYND domain impairs the BS69-EBNA2 interaction and abolishes the BS69 inhibition of the EBNA2-mediated transactivation and LCL proliferation. This study identifies the BS69 C-terminal domains as an inhibitor of EBNA2, which may have important implications in development of novel therapeutic strategies against EBV infection.

References

[1]  Epstein MA, Achong BG, & Barr YM (1964) Virus Particles in Cultured Lymphoblasts from Burkitt's Lymphoma. Lancet 1(7335):702–703. pmid:14107961 doi: 10.1016/s0140-6736(64)91524-7
[2]  Klein E, Kis LL, & Klein G (2007) Epstein-Barr virus infection in humans: from harmless to life endangering virus-lymphocyte interactions. Oncogene 26(9):1297–1305. pmid:17322915 doi: 10.1038/sj.onc.1210240
[3]  Rickinson AB & Kieff E (1996) Epstein-Barr virus. Fields virology, eds Field BN, Knipe DM, & Howley PM (Lippincott-Raven Publishers, Philadelphia, Pa.), 3rd Ed, pp 2397–2446.
[4]  Allday MJ, Crawford DH, & Griffin BE (1989) Epstein-Barr virus latent gene expression during the initiation of B cell immortalization. J Gen Virol 70 (Pt 7):1755–1764. pmid:2544663 doi: 10.1099/0022-1317-70-7-1755
[5]  Rooney C, Howe JG, Speck SH, & Miller G (1989) Influence of Burkitt's lymphoma and primary B cells on latent gene expression by the nonimmortalizing P3J-HR-1 strain of Epstein-Barr virus. J Virol 63(4):1531–1539. pmid:2538644
[6]  Sinclair AJ, Palmero I, Peters G, & Farrell PJ (1994) EBNA-2 and EBNA-LP cooperate to cause G0 to G1 transition during immortalization of resting human B lymphocytes by Epstein-Barr virus. EMBO J 13(14):3321–3328. pmid:8045261
[7]  Zimber-Strobl U & Strobl LJ (2001) EBNA2 and Notch signalling in Epstein-Barr virus mediated immortalization of B lymphocytes. Seminars in cancer biology 11(6):423–434. pmid:11669604 doi: 10.1006/scbi.2001.0409
[8]  Wang L, Grossman SR, & Kieff E (2000) Epstein-Barr virus nuclear protein 2 interacts with p300, CBP, and PCAF histone acetyltransferases in activation of the LMP1 promoter. Proc Natl Acad Sci U S A 97(1):430–435. pmid:10618435 doi: 10.1073/pnas.97.1.430
[9]  Tong X, Drapkin R, Reinberg D, & Kieff E (1995) The 62- and 80-kDa subunits of transcription factor IIH mediate the interaction with Epstein-Barr virus nuclear protein 2. Proc Natl Acad Sci U S A 92(8):3259–3263. pmid:7724549 doi: 10.1073/pnas.92.8.3259
[10]  Tong X, Drapkin R, Yalamanchili R, Mosialos G, & Kieff E (1995) The Epstein-Barr virus nuclear protein 2 acidic domain forms a complex with a novel cellular coactivator that can interact with TFIIE. Mol Cell Biol 15(9):4735–4744. pmid:7651391 doi: 10.1128/mcb.15.9.4735
[11]  Tong X, Wang F, Thut CJ, & Kieff E (1995) The Epstein-Barr virus nuclear protein 2 acidic domain can interact with TFIIB, TAF40, and RPA70 but not with TATA-binding protein. J Virol 69(1):585–588. pmid:7983760
[12]  Ling PD, Ryon JJ, & Hayward SD (1993) EBNA-2 of herpesvirus papio diverges significantly from the type A and type B EBNA-2 proteins of Epstein-Barr virus but retains an efficient transactivation domain with a conserved hydrophobic motif. J Virol 67(6):2990–3003. pmid:8388484
[13]  Harada S & Kieff E (1997) Epstein-Barr virus nuclear protein LP stimulates EBNA-2 acidic domain-mediated transcriptional activation. J Virol 71(9):6611–6618. pmid:9261383
[14]  Nitsche F, Bell A, & Rickinson A (1997) Epstein-Barr virus leader protein enhances EBNA-2-mediated transactivation of latent membrane protein 1 expression: a role for the W1W2 repeat domain. J Virol 71(9):6619–6628. pmid:9261384
[15]  Ling PD, Rawlins DR, & Hayward SD (1993) The Epstein-Barr virus immortalizing protein EBNA-2 is targeted to DNA by a cellular enhancer-binding protein. Proc Natl Acad Sci U S A 90(20):9237–9241. pmid:8415684 doi: 10.1073/pnas.90.20.9237
[16]  Zhou S, Fujimuro M, Hsieh JJ, Chen L, & Hayward SD (2000) A role for SKIP in EBNA2 activation of CBF1-repressed promoters. J Virol 74(4):1939–1947. pmid:10644367 doi: 10.1128/jvi.74.4.1939-1947.2000
[17]  Peng CW, et al. (2004) Direct interactions between Epstein-Barr virus leader protein LP and the EBNA2 acidic domain underlie coordinate transcriptional regulation. Proc Natl Acad Sci U S A 101(4):1033–1038. pmid:14732686 doi: 10.1073/pnas.0307808100
[18]  Peng CW, Zhao B, & Kieff E (2004) Four EBNA2 domains are important for EBNALP coactivation. J Virol 78(20):11439–11442. pmid:15452270 doi: 10.1128/jvi.78.20.11439-11442.2004
[19]  Guo R, et al. (2014) BS69/ZMYND11 reads and connects histone H3.3 lysine 36 trimethylation-decorated chromatin to regulated pre-mRNA processing. Mol Cell 56(2):298–310. doi: 10.1016/j.molcel.2014.08.022. pmid:25263594
[20]  Ladendorff NE, Wu S, & Lipsick JS (2001) BS69, an adenovirus E1A-associated protein, inhibits the transcriptional activity of c-Myb. Oncogene 20(1):125–132. pmid:11244510 doi: 10.1038/sj.onc.1204048
[21]  Wen H, et al. (2014) ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression. Nature 508(7495):263–268. doi: 10.1038/nature13045. pmid:24590075
[22]  Ansieau S & Leutz A (2002) The conserved Mynd domain of BS69 binds cellular and oncoviral proteins through a common PXLXP motif. J Biol Chem 277(7):4906–4910. pmid:11733528 doi: 10.1074/jbc.m110078200
[23]  Hateboer G, et al. (1995) BS69, a novel adenovirus E1A-associated protein that inhibits E1A transactivation. EMBO J 14(13):3159–3169. pmid:7621829
[24]  Masselink H & Bernards R (2000) The adenovirus E1A binding protein BS69 is a corepressor of transcription through recruitment of N-CoR. Oncogene 19(12):1538–1546. pmid:10734313 doi: 10.1038/sj.onc.1203421
[25]  Velasco G, Grkovic S, & Ansieau S (2006) New insights into BS69 functions. J Biol Chem 281(24):16546–16550. pmid:16565076 doi: 10.1074/jbc.m600573200
[26]  Menezes J, Leibold W, Klein G, & Clements G (1975) Establishment and characterization of an Epstein-Barr virus (EBC)- negative lymphoblastoid B cell line (BJA-B) from an exceptional, EBV- genome-negative African Burkitt's lymphoma. Biomedicine 22(4):276–284. pmid:179629
[27]  McDonnell AV, Jiang T, Keating AE, & Berger B (2006) Paircoil2: improved prediction of coiled coils from sequence. Bioinformatics 22(3):356–358. pmid:16317077 doi: 10.1093/bioinformatics/bti797
[28]  Kateb F, et al. (2013) Structural and functional analysis of the DEAF-1 and BS69 MYND domains. PloS one 8(1):e54715. doi: 10.1371/journal.pone.0054715. pmid:23372760
[29]  Liu Y, et al. (2007) Structural basis for recognition of SMRT/N-CoR by the MYND domain and its contribution to AML1/ETO's activity. Cancer Cell 11(6):483–497. pmid:17560331 doi: 10.1016/j.ccr.2007.04.010
[30]  Matthews JM, et al. (2009) It takes two to tango: the structure and function of LIM, RING, PHD and MYND domains. Current pharmaceutical design 15(31):3681–3696. pmid:19925420 doi: 10.2174/138161209789271861
[31]  Zhao B, et al. (2011) Epstein-Barr virus exploits intrinsic B-lymphocyte transcription programs to achieve immortal cell growth. Proc Natl Acad Sci U S A 108(36):14902–14907. doi: 10.1073/pnas.1108892108. pmid:21746931
[32]  Takada K, et al. (1991) An Epstein-Barr virus-producer line Akata: establishment of the cell line and analysis of viral DNA. Virus genes 5(2):147–156. pmid:1647567 doi: 10.1007/bf00571929
[33]  Abbot SD, et al. (1990) Epstein-Barr virus nuclear antigen 2 induces expression of the virus-encoded latent membrane protein. J Virol 64(5):2126–2134. pmid:2157875
[34]  Wang F, Tsang SF, Kurilla MG, Cohen JI, & Kieff E (1990) Epstein-Barr virus nuclear antigen 2 transactivates latent membrane protein LMP1. J Virol 64(7):3407–3416. pmid:2352328
[35]  Sung NS, Kenney S, Gutsch D, & Pagano JS (1991) EBNA-2 transactivates a lymphoid-specific enhancer in the BamHI C promoter of Epstein-Barr virus. J Virol 65(5):2164–2169. pmid:1850003 doi: 10.1007/978-1-4612-0405-3_7
[36]  Woisetschlaeger M, Yandava CN, Furmanski LA, Strominger JL, & Speck SH (1990) Promoter switching in Epstein-Barr virus during the initial stages of infection of B lymphocytes. Proc Natl Acad Sci U S A 87(5):1725–1729. pmid:2155423 doi: 10.1073/pnas.87.5.1725
[37]  Cohen JI & Kieff E (1991) An Epstein-Barr virus nuclear protein 2 domain essential for transformation is a direct transcriptional activator. J Virol 65(11):5880–5885. pmid:1656076
[38]  Wang YL, Faiola F, Xu M, Pan S, & Martinez E (2008) Human ATAC Is a GCN5/PCAF-containing acetylase complex with a novel NC2-like histone fold module that interacts with the TATA-binding protein. J Biol Chem 283(49):33808–33815. doi: 10.1074/jbc.M806936200. pmid:18838386
[39]  Yalamanchili R, et al. (1994) Genetic and biochemical evidence that EBNA 2 interaction with a 63-kDa cellular GTG-binding protein is essential for B lymphocyte growth transformation by EBV. Virology 204(2):634–641. pmid:7941331 doi: 10.1006/viro.1994.1578
[40]  Banaszynski LA, Chen LC, Maynard-Smith LA, Ooi AG, & Wandless TJ (2006) A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126(5):995–1004. pmid:16959577 doi: 10.1016/j.cell.2006.07.025
[41]  Guo R, et al. (2014) BS69/ZMYND11 Reads and Connects Histone H3.3 Lysine 36 Trimethylation-Decorated Chromatin to Regulated Pre-mRNA Processing. Mol Cell. doi: 10.1016/j.molcel.2014.08.022
[42]  Wan J, et al. (2006) BS69, a specific adaptor in the latent membrane protein 1-mediated c-Jun N-terminal kinase pathway. Mol Cell Biol 26(2):448–456. pmid:16382137 doi: 10.1128/mcb.26.2.448-456.2006
[43]  Liu Y, et al. (2006) The tetramer structure of the Nervy homology two domain, NHR2, is critical for AML1/ETO's activity. Cancer Cell 9(4):249–260. pmid:16616331 doi: 10.1016/j.ccr.2006.03.012
[44]  Sun XJ, et al. (2013) A stable transcription factor complex nucleated by oligomeric AML1-ETO controls leukaemogenesis. Nature 500(7460):93–97. doi: 10.1038/nature12287. pmid:23812588
[45]  Cubeddu L, Joseph S, Richard DJ, & Matthews JM (2012) Contribution of DEAF1 structural domains to the interaction with the breast cancer oncogene LMO4. PloS one 7(6):e39218. doi: 10.1371/journal.pone.0039218. pmid:22723967
[46]  Cobben JM, et al. (2014) A de novo mutation in ZMYND11, a candidate gene for 10p15.3 deletion syndrome, is associated with syndromic intellectual disability. European journal of medical genetics 57(11–12):636–638. doi: 10.1016/j.ejmg.2014.09.002. pmid:25281490
[47]  Coe BP, et al. (2014) Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nat Genet 46(10):1063–1071. doi: 10.1038/ng.3092. pmid:25217958
[48]  Miller G, Shope T, Lisco H, Stitt D, & Lipman M (1972) Epstein-Barr virus: transformation, cytopathic changes, and viral antigens in squirrel monkey and marmoset leukocytes. Proc Natl Acad Sci U S A 69(2):383–387. pmid:4333982 doi: 10.1073/pnas.69.2.383
[49]  Given D & Kieff E (1978) DNA of Epstein-Barr virus. IV. Linkage map of restriction enzyme fragments of the B95-8 and W91 strains of Epstein-Barr Virus. J Virol 28(2):524–542. pmid:214576
[50]  Adams PD, et al. (2002) PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 58(Pt 11):1948–1954. pmid:12393927 doi: 10.1107/s0907444902016657
[51]  Emsley P & Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60(Pt 12 Pt 1):2126–2132. pmid:15572765 doi: 10.1107/s0907444904019158
[52]  Liu CD, et al. (2012) The nuclear chaperone nucleophosmin escorts an epstein-barr virus nuclear antigen to establish transcriptional cascades for latent infection in human B cells. PLoS Pathog 8(12):e1003084. doi: 10.1371/journal.ppat.1003084. pmid:23271972
[53]  Chen YL, et al. (2014) Nucleolin is important for Epstein-Barr virus nuclear antigen 1-mediated episome binding, maintenance, and transcription. Proc Natl Acad Sci U S A 111(1):243–248. doi: 10.1073/pnas.1321800111. pmid:24344309
[54]  Liu X, Tesfai J, Evrard YA, Dent SY, & Martinez E (2003) c-Myc transformation domain recruits the human STAGA complex and requires TRRAP and GCN5 acetylase activity for transcription activation. J Biol Chem 278(22):20405–20412. pmid:12660246 doi: 10.1074/jbc.m211795200
[55]  Peng CW, et al. (2007) Hsp72 up-regulates Epstein-Barr virus EBNALP coactivation with EBNA2. Blood 109(12):5447–5454. pmid:17341665 doi: 10.1182/blood-2006-08-040634

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133