全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Gliding Associated Proteins Play Essential Roles during the Formation of the Inner Membrane Complex of Toxoplasma gondii

DOI: 10.1371/journal.ppat.1005403

Full-Text   Cite this paper   Add to My Lib

Abstract:

The inner membrane complex (IMC) of apicomplexan parasites is a specialised structure localised beneath the parasite’s plasma membrane, and is important for parasite stability and intracellular replication. Furthermore, it serves as an anchor for the myosin A motor complex, termed the glideosome. While the role of this protein complex in parasite motility and host cell invasion has been well described, additional roles during the asexual life cycle are unknown. Here, we demonstrate that core elements of the glideosome, the gliding associated proteins GAP40 and GAP50 as well as members of the GAPM family, have critical roles in the biogenesis of the IMC during intracellular replication. Deletion or disruption of these genes resulted in the rapid collapse of developing parasites after initiation of the cell cycle and led to redistribution of other glideosome components.

References

[1]  Tremp AZ, Khater EI, Dessens JT (2008) IMC1b is a putative membrane skeleton protein involved in cell shape, mechanical strength, motility, and infectivity of malaria ookinetes. J Biol Chem 283: 27604–27611. doi: 10.1074/jbc.M801302200. pmid:18650444
[2]  Mann T, Beckers C (2001) Characterization of the subpellicular network, a filamentous membrane skeletal component in the parasite Toxoplasma gondii. Mol Biochem Parasitol 115: 257–268. pmid:11420112 doi: 10.1016/s0166-6851(01)00289-4
[3]  Barkhuff WD, Gilk SD, Whitmarsh R, Tilley LD, Hunter C, et al. (2011) Targeted disruption of TgPhIL1 in Toxoplasma gondii results in altered parasite morphology and fitness. PLoS One 6: e23977. doi: 10.1371/journal.pone.0023977. pmid:21901148
[4]  Kudryashev M, Lepper S, Stanway R, Bohn S, Baumeister W, et al. (2010) Positioning of large organelles by a membrane- associated cytoskeleton in Plasmodium sporozoites. Cell Microbiol 12: 362–371. doi: 10.1111/j.1462-5822.2009.01399.x. pmid:19863555
[5]  Anderson-White BR, Ivey FD, Cheng K, Szatanek T, Lorestani A, et al. (2011) A family of intermediate filament-like proteins is sequentially assembled into the cytoskeleton of Toxoplasma gondii. Cell Microbiol 13: 18–31. doi: 10.1111/j.1462-5822.2010.01514.x. pmid:20698859
[6]  Dubremetz JF, Torpier G., Maurois P., Prensier G., and Sinden R. (1979) Structure de la pellicule du sporozoite de Plasmodium yoelii etude par cryofracture. C R Acad Sci Paris 288: 3.
[7]  Morrissette NS, Murray JM, Roos DS (1997) Subpellicular microtubules associate with an intramembranous particle lattice in the protozoan parasite Toxoplasma gondii. J Cell Sci 110 (Pt 1): 35–42. pmid:9010782
[8]  Cintra WM, de Souza W (1985) Distribution of intramembranous particles and filipin-sterol complexes in the cell membranes of Toxoplasma gondii. Eur J Cell Biol 37: 63–69. pmid:4029171
[9]  Opitz C, Soldati D (2002) 'The glideosome': a dynamic complex powering gliding motion and host cell invasion by Toxoplasma gondii. Mol Microbiol 45: 597–604. pmid:12139608 doi: 10.1046/j.1365-2958.2002.03056.x
[10]  Bargieri DY, Andenmatten N, Lagal V, Thiberge S, Whitelaw JA, et al. (2013) Apical membrane antigen 1 mediates apicomplexan parasite attachment but is dispensable for host cell invasion. Nat Commun 4: 2552. doi: 10.1038/ncomms3552. pmid:24108241
[11]  Egarter S, Andenmatten N, Jackson AJ, Whitelaw JA, Pall G, et al. (2014) The toxoplasma Acto-MyoA motor complex is important but not essential for gliding motility and host cell invasion. PLoS One 9: e91819. doi: 10.1371/journal.pone.0091819. pmid:24632839
[12]  Meissner M, Ferguson DJ, Frischknecht F (2013) Invasion factors of apicomplexan parasites: essential or redundant? Curr Opin Microbiol 16: 438–444. doi: 10.1016/j.mib.2013.05.002. pmid:23727286
[13]  Gaskins E, Gilk S, DeVore N, Mann T, Ward G, et al. (2004) Identification of the membrane receptor of a class XIV myosin in Toxoplasma gondii. J Cell Biol 165: 383–393. pmid:15123738 doi: 10.1083/jcb.200311137
[14]  Fauquenoy S, Hovasse A, Sloves PJ, Morelle W, Dilezitoko Alayi T, et al. (2011) Unusual N-glycan structures required for trafficking Toxoplasma gondii GAP50 to the inner membrane complex regulate host cell entry through parasite motility. Mol Cell Proteomics 10: M111 008953. doi: 10.1074/mcp.m111.008953
[15]  Ouologuem DT, Roos DS (2014) Dynamics of the Toxoplasma gondii inner membrane complex. J Cell Sci. doi: 10.1242/jcs.147736
[16]  Frenal K, Polonais V, Marq JB, Stratmann R, Limenitakis J, et al. (2010) Functional dissection of the apicomplexan glideosome molecular architecture. Cell Host Microbe 8: 343–357. doi: 10.1016/j.chom.2010.09.002. pmid:20951968
[17]  Rees-Channer RR, Martin SR, Green JL, Bowyer PW, Grainger M, et al. (2006) Dual acylation of the 45 kDa gliding-associated protein (GAP45) in Plasmodium falciparum merozoites. Mol Biochem Parasitol 149: 113–116. pmid:16750579 doi: 10.1016/j.molbiopara.2006.04.008
[18]  Meissner M, Schluter D, Soldati D (2002) Role of Toxoplasma gondii myosin A in powering parasite gliding and host cell invasion. Science 298: 837–840. pmid:12399593 doi: 10.1126/science.1074553
[19]  Agop-Nersesian C, Egarter S, Langsley G, Foth BJ, Ferguson DJ, et al. (2010) Biogenesis of the inner membrane complex is dependent on vesicular transport by the alveolate specific GTPase Rab11B. PLoS Pathog 6: e1001029. doi: 10.1371/journal.ppat.1001029. pmid:20686666
[20]  Agop-Nersesian C, Naissant B, Ben Rached F, Rauch M, Kretzschmar A, et al. (2009) Rab11A-controlled assembly of the inner membrane complex is required for completion of apicomplexan cytokinesis. PLoS Pathog 5: e1000270. doi: 10.1371/journal.ppat.1000270. pmid:19165333
[21]  Andenmatten N, Egarter S, Jackson AJ, Jullien N, Herman JP, et al. (2013) Conditional genome engineering in Toxoplasma gondii uncovers alternative invasion mechanisms. Nat Methods 10: 125–127. doi: 10.1038/nmeth.2301. pmid:23263690
[22]  Herm-Gotz A, Agop-Nersesian C, Munter S, Grimley JS, Wandless TJ, et al. (2007) Rapid control of protein level in the apicomplexan Toxoplasma gondii. Nat Methods 4: 1003–1005. pmid:17994029 doi: 10.1038/nmeth1134
[23]  Francia ME, Striepen B (2014) Cell division in apicomplexan parasites. Nat Rev Microbiol. doi: 10.1038/nrmicro3184
[24]  Nishi M, Hu K, Murray JM, Roos DS (2008) Organellar dynamics during the cell cycle of Toxoplasma gondii. J Cell Sci 121: 1559–1568. doi: 10.1242/jcs.021089. pmid:18411248
[25]  Striepen B, Crawford MJ, Shaw MK, Tilney LG, Seeber F, et al. (2000) The plastid of Toxoplasma gondii is divided by association with the centrosomes. J Cell Biol 151: 1423–1434. pmid:11134072 doi: 10.1083/jcb.151.7.1423
[26]  Shaw MK, Compton HL, Roos DS, Tilney LG (2000) Microtubules, but not actin filaments, drive daughter cell budding and cell division in Toxoplasma gondii. J Cell Sci 113 (Pt 7): 1241–1254. pmid:10704375
[27]  Gubbels MJ, Wieffer M, Striepen B (2004) Fluorescent protein tagging in Toxoplasma gondii: identification of a novel inner membrane complex component conserved among Apicomplexa. Mol Biochem Parasitol 137: 99–110. pmid:15279956 doi: 10.1016/j.molbiopara.2004.05.007
[28]  Plessmann U, Reiter-Owona I, Lechtreck KF (2004) Posttranslational modifications of alpha-tubulin of Toxoplasma gondii. Parasitol Res 94: 386–389. pmid:15549389 doi: 10.1007/s00436-004-1220-7
[29]  Xiao H, El Bissati K, Verdier-Pinard P, Burd B, Zhang H, et al. (2010) Post-translational modifications to Toxoplasma gondii alpha- and beta-tubulins include novel C-terminal methylation. J Proteome Res 9: 359–372. doi: 10.1021/pr900699a. pmid:19886702
[30]  Gajria B, Bahl A, Brestelli J, Dommer J, Fischer S, et al. (2008) ToxoDB: an integrated Toxoplasma gondii database resource. Nucleic Acids Res 36: D553–556. pmid:18003657 doi: 10.1093/nar/gkm981
[31]  Beck JR, Rodriguez-Fernandez IA, de Leon JC, Huynh MH, Carruthers VB, et al. (2010) A novel family of Toxoplasma IMC proteins displays a hierarchical organization and functions in coordinating parasite division. PLoS Pathog 6: e1001094. doi: 10.1371/journal.ppat.1001094. pmid:20844581
[32]  Tilley LD, Krishnamurthy S, Westwood NJ, Ward GE (2014) Identification of TgCBAP, a novel cytoskeletal protein that localizes to three distinct subcompartments of the Toxoplasma gondii pellicle. PLoS One 9: e98492. doi: 10.1371/journal.pone.0098492. pmid:24887026
[33]  Lentini G, Kong-Hap M, El Hajj H, Francia M, Claudet C, et al. (2015) Identification and characterization of Toxoplasma SIP, a conserved apicomplexan cytoskeleton protein involved in maintaining the shape, motility and virulence of the parasite. Cell Microbiol 17: 62–78. doi: 10.1111/cmi.12337. pmid:25088010
[34]  Chen AL, Kim EW, Toh JY, Vashisht AA, Rashoff AQ, et al. (2015) Novel components of the Toxoplasma inner membrane complex revealed by BioID. MBio 6: e02357–02314. doi: 10.1128/mBio.02357-14. pmid:25691595
[35]  Ernoult-Lange M, Baconnais S, Harper M, Minshall N, Souquere S, et al. (2012) Multiple binding of repressed mRNAs by the P-body protein Rck/p54. RNA 18: 1702–1715. doi: 10.1261/rna.034314.112. pmid:22836354
[36]  Andrey P, Kieu K, Kress C, Lehmann G, Tirichine L, et al. (2010) Statistical analysis of 3D images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei. PLoS Comput Biol 6: e1000853. doi: 10.1371/journal.pcbi.1000853. pmid:20628576
[37]  Bullen HE, Tonkin CJ, O'Donnell RA, Tham WH, Papenfuss AT, et al. (2009) A novel family of Apicomplexan glideosome-associated proteins with an inner membrane-anchoring role. J Biol Chem 284: 25353–25363. doi: 10.1074/jbc.M109.036772. pmid:19561073
[38]  Shen B, Brown KM, Lee TD, Sibley LD (2014) Efficient gene disruption in diverse strains of Toxoplasma gondii using CRISPR/CAS9. MBio 5: e01114–01114. doi: 10.1128/mBio.01114-14. pmid:24825012
[39]  Sidik SM, Hackett CG, Tran F, Westwood NJ, Lourido S (2014) Efficient genome engineering of Toxoplasma gondii using CRISPR/Cas9. PLoS One 9: e100450. doi: 10.1371/journal.pone.0100450. pmid:24971596
[40]  Harding CR, Meissner M (2014) The inner membrane complex through development of Toxoplasma gondii and Plasmodium. Cell Microbiol 16: 632–641. doi: 10.1111/cmi.12285. pmid:24612102
[41]  Frenal K, Kemp LE, Soldati-Favre D (2014) Emerging roles for protein S-palmitoylation in Toxoplasma biology. Int J Parasitol 44: 121–131. doi: 10.1016/j.ijpara.2013.09.004. pmid:24184909
[42]  Roos DS, Donald RG, Morrissette NS, Moulton AL (1994) Molecular tools for genetic dissection of the protozoan parasite Toxoplasma gondii. Methods Cell Biol 45: 27–63. pmid:7707991 doi: 10.1016/s0091-679x(08)61845-2
[43]  Ferguson DJ, Henriquez FL, Kirisits MJ, Muench SP, Prigge ST, et al. (2005) Maternal inheritance and stage-specific variation of the apicoplast in Toxoplasma gondii during development in the intermediate and definitive host. Eukaryot Cell 4: 814–826. pmid:15821140 doi: 10.1128/ec.4.4.814-826.2005
[44]  Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, et al. (2006) CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7: R100. pmid:17076895

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133