[1] | Kim I, Zambryski PC (2005) Cell-to-cell communication via plasmodesmata during Arabidopsis embryogenesis. Curr Opin Plant Biol 8: 593–599. pmid:16207533 doi: 10.1016/j.pbi.2005.09.013
|
[2] | Yadav SR, Yan D, Sevilem I, Helariutta Y (2014) Plasmodesmata-mediated intercellular signaling during plant growth and development. Front Plant Sci 5: 44. doi: 10.3389/fpls.2014.00044. pmid:24596574
|
[3] | Van Norman JM, Breakfield NW, Benfey PN (2011) Intercellular communication during plant development. Plant Cell 23: 855–864. doi: 10.1105/tpc.111.082982. pmid:21386031
|
[4] | Benitez-Alfonso Y, Faulkner C, Ritzenthaler C, Maule AJ (2010) Plasmodesmata: gateways to local and systemic virus infection. Mol Plant Microbe Interact 23: 1403–1412. doi: 10.1094/MPMI-05-10-0116. pmid:20687788
|
[5] | Lucas WJ (2006) Plant viral movement proteins: agents for cell-to-cell trafficking of viral genomes. Virology 344: 169–184. pmid:16364748 doi: 10.1016/j.virol.2005.09.026
|
[6] | Heinlein M (2015) Plasmodesmata: channels for viruses on the move. Methods Mol Biol 1217: 25–52. doi: 10.1007/978-1-4939-1523-1_2. pmid:25287194
|
[7] | Maule AJ (2008) Plasmodesmata: structure, function and biogenesis. Curr Opin Plant Biol 11: 680–686. doi: 10.1016/j.pbi.2008.08.002. pmid:18824402
|
[8] | Lucas WJ, Ham BK, Kim JY (2009) Plasmodesmata—bridging the gap between neighboring plant cells. Trends Cell Biol 19: 495–503. doi: 10.1016/j.tcb.2009.07.003. pmid:19748270
|
[9] | Dunoyer P, Brosnan CA, Schott G, Wang Y, Jay F, et al. (2010) An endogenous, systemic RNAi pathway in plants. EMBO J 29: 1699–1712. doi: 10.1038/emboj.2010.65. pmid:20414198
|
[10] | Tilsner J, Oparka KJ (2012) Missing links?—the connection between replication and movement of plant RNA viruses. Curr Opin Virol 2: 705–711. doi: 10.1016/j.coviro.2012.09.007. pmid:23036608
|
[11] | Tilsner J, Linnik O, Louveaux M, Roberts IM, Chapman SN, et al. (2013) Replication and trafficking of a plant virus are coupled at the entrances of plasmodesmata. J Cell Biol 201: 981–995. doi: 10.1083/jcb.201304003. pmid:23798728
|
[12] | Pena EJ, Heinlein M (2012) RNA transport during TMV cell-to-cell movement. Front Plant Sci 3: 193. doi: 10.3389/fpls.2012.00193. pmid:22973280
|
[13] | Jackson AO, Lim H-S, Bragg J, Ganesan U, Lee MY (2009) Hordeivirus replication, movement, and pathogenesis. Annu Rev Phytopathol 47: 385–422. doi: 10.1146/annurev-phyto-080508-081733. pmid:19400645
|
[14] | Wang A (2015) Dissecting the molecular network of virus-plant interactions: The complex roles of host factors. Annu Rev Phytopathol 53:45–66. doi: 10.1146/annurev-phyto-080614-120001. pmid:25938276
|
[15] | Ueki S, Citovsky V (2011) To gate, or not to gate: regulatory mechanisms for intercellular protein transport and virus movement in plants. Mol Plant 4: 782–793. doi: 10.1093/mp/ssr060. pmid:21746703
|
[16] | Harries PA, Schoelz JE, Nelson RS (2010) Intracellular transport of viruses and their components: utilizing the cytoskeleton and membrane highways. Mol Plant Microbe Interact 23: 1381–1393. doi: 10.1094/MPMI-05-10-0121. pmid:20653412
|
[17] | Niehl A, Heinlein M (2011) Cellular pathways for viral transport through plasmodesmata. Protoplasma 248: 75–99. doi: 10.1007/s00709-010-0246-1. pmid:21125301
|
[18] | Stefano G, Hawes C, Brandizzi F (2014) ER—the key to the highway. Curr Opin Plant Biol 22: 30–38. doi: 10.1016/j.pbi.2014.09.001. pmid:25259957
|
[19] | Avisar D, Prokhnevsky AI, Makarova KS, Koonin EV, Dolja VV (2008) Myosin XI-K is required for rapid trafficking of golgi stacks, peroxisomes, and mitochondria in leaf cells of Nicotiana benthamiana. Plant Physiol 146: 1098–1108. doi: 10.1104/pp.107.113647. pmid:18178670
|
[20] | Grabski S, De Feijter AW, Schindler M (1993) Endoplasmic reticulum forms a dynamic continuum for lipid diffusion between contiguous soybean root cells. Plant Cell 5: 25–38. pmid:12271014 doi: 10.2307/3869425
|
[21] | Wu S, Gallagher KL (2013) Intact microtubules are required for the intercellular movement of the SHORT-ROOT transcription factor. Plant J 74: 148–159. doi: 10.1111/tpj.12112. pmid:23294290
|
[22] | Liu C, Nelson RS (2013) The cell biology of Tobacco mosaic virus replication and movement. Front Plant Sci 4: 12. doi: 10.3389/fpls.2013.00012. pmid:23403525
|
[23] | Krishnamurthy K, Mitra R, Payton ME, Verchot-Lubicz J (2002) Cell-to-cell movement of the PVX 12K, 8K, or coat proteins may depend on the host, leaf developmental stage, and the PVX 25K protein. Virology 300: 269–281. pmid:12350357 doi: 10.1006/viro.2002.1506
|
[24] | Wu C, Lee S, Wang C (2011) Viral protein targeting to the cortical endoplasmic reticulum is required for cell-cell spreading in plants. J Cell Biol 193: 521–535. doi: 10.1083/jcb.201006023. pmid:21518793
|
[25] | Kaido M, Tsuno Y, Mise K, Okuno T (2009) Endoplasmic reticulum targeting of the Red clover necrotic mosaic virus movement protein is associated with the replication of viral RNA1 but not that of RNA2. Virology 395: 232–242. doi: 10.1016/j.virol.2009.09.022. pmid:19819513
|
[26] | Kaido M, Abe K, Mine A, Hyodo K, Taniguchi T, et al. (2014) GAPDH-A recruits a plant virus movement protein to cortical virus replication complexes to facilitate viral cell-to-cell movement. PLoS Pathog 10: e1004505. doi: 10.1371/journal.ppat.1004505. pmid:25411849
|
[27] | Ju HJ, Samuels TD, Wang YS, Blancaflor E, Payton M, et al. (2005) The Potato virus X TGBp2 movement protein associates with endoplasmic reticulum-derived vesicles during virus infection. Plant Physiol 138: 1877–1895. pmid:16055678 doi: 10.1104/pp.105.066019
|
[28] | Genoves A, Navarro JA, Pallas V (2010) The Intra- and intercellular movement of Melon necrotic spot virus (MNSV) depends on an active secretory pathway. Mol Plant Microbe Interact 23: 263–272. doi: 10.1094/MPMI-23-3-0263. pmid:20121448
|
[29] | Cui X, Wei T, Chowda-Reddy RV, Sun G, Wang A (2010) The Tobacco etch virus P3 protein forms mobile inclusions via the early secretory pathway and traffics along actin microfilaments. Virology 397: 56–63. doi: 10.1016/j.virol.2009.11.015. pmid:19945728
|
[30] | Laporte C, Vetter G, Loudes AM, Robinson DG, Hillmer S, et al. (2003) Involvement of the secretory pathway and the cytoskeleton in intracellular targeting and tubule assembly of Grapevine fanleaf virus movement protein in tobacco BY-2 cells. Plant Cell 15: 2058–2075. pmid:12953111 doi: 10.1105/tpc.013896
|
[31] | Yuan Z, Chen H, Chen Q, Omura T, Xie L, et al. (2011) The early secretory pathway and an actin-myosin VIII motility system are required for plasmodesmatal localization of the NSvc4 protein of Rice stripe virus. Virus Res 159: 62–68. doi: 10.1016/j.virusres.2011.04.023. pmid:21565229
|
[32] | Vogel F, Hofius D, Sonnewald U (2007) Intracellular trafficking of Potato leafroll virus movement protein in transgenic Arabidopsis. Traffic 8: 1205–1214. pmid:17631001 doi: 10.1111/j.1600-0854.2007.00608.x
|
[33] | Andika IB, Zheng S, Tan Z, Sun L, Kondo H, et al. (2013) Endoplasmic reticulum export and vesicle formation of the movement protein of Chinese wheat mosaic virus are regulated by two transmembrane domains and depend on the secretory pathway. Virology 435: 493–503. doi: 10.1016/j.virol.2012.10.024. pmid:23137810
|
[34] | Xu Y, Zhou X (2012) Role of Rice stripe virus NSvc4 in cell-to-cell movement and symptom development in Nicotiana benthamiana. Front Plant Sci. 3: 269. doi: 10.3389/fpls.2012.00269. pmid:23233857
|
[35] | Harries PA, Palanichelvam K, Yu W, Schoelz JE, Nelson RS (2009) The Cauliflower mosaic virus protein P6 forms motile inclusions that traffic along actin microfilaments and stabilize microtubules. Plant Physiol 149: 1005–1016. doi: 10.1104/pp.108.131755. pmid:19028879
|
[36] | Prokhnevsky AI, Peremyslov VV, Dolja VV (2005) Actin cytoskeleton is involved in targeting of a viral Hsp70 homolog to the cell periphery. J Virol 79: 14421–14428. pmid:16254376 doi: 10.1128/jvi.79.22.14421-14428.2005
|
[37] | Agbeci M, Grangeon R, Nelson RS, Zheng H, Laliberte JF (2013) Contribution of host intracellular transport machineries to intercellular movement of Turnip mosaic virus. PLoS Pathog 9: e1003683. doi: 10.1371/journal.ppat.1003683. pmid:24098128
|
[38] | Amari K, Di Donato M, Dolja VV, Heinlein M (2014) Myosins VIII and XI play distinct roles in reproduction and transport of Tobacco mosaic virus. PLoS Pathog 10: e1004448. doi: 10.1371/journal.ppat.1004448. pmid:25329993
|
[39] | Amari K, Lerich A, Schmitt-Keichinger C, Dolja VV, Ritzenthaler C (2011) Tubule-guided cell-to-cell movement of a plant virus requires class XI myosin motors. PLoS Pathog 7: e1002327. doi: 10.1371/journal.ppat.1002327. pmid:22046131
|
[40] | Harries PA, Park JW, Sasaki N, Ballard KD, Maule AJ, et al. (2009) Differing requirements for actin and myosin by plant viruses for sustained intercellular movement. Proc Natl Acad Sci U S A 106: 17594–17599. doi: 10.1073/pnas.0909239106. pmid:19805075
|
[41] | Uchiyama A, Shimada-Beltran H, Levy A, Zheng JY, Javia PA, et al. (2014) The Arabidopsis synaptotagmin SYTA regulates the cell-to-cell movement of diverse plant viruses. Front Plant Sci 5: 584. doi: 10.3389/fpls.2014.00584. pmid:25414709
|
[42] | Haupt S, Cowan GH, Ziegler A, Roberts AG, Oparka KJ, et al. (2005) Two plant-viral movement proteins traffic in the endocytic recycling pathway. Plant Cell 17: 164–181. pmid:15608333 doi: 10.1105/tpc.104.027821
|
[43] | Lewis JD, Lazarowitz SG (2010) Arabidopsis synaptotagmin SYTA regulates endocytosis and virus movement protein cell-to-cell transport. Proc Natl Acad Sci U S A 107: 2491–2496. doi: 10.1073/pnas.0909080107. pmid:20133785
|
[44] | Elliott RM (1990) Molecular biology of the Bunyaviridae. J Gen Virol 71: 501–522. pmid:2179464 doi: 10.1099/0022-1317-71-3-501
|
[45] | Elliott RM (1996) The Bunyaviridae: Plenum Press, New York.
|
[46] | Goldbach R, Peters D (1996) Molecular and biological aspects of tospoviruses. In: The Bunyaviridae, Elliott RM (ed) Plenum Press, New York pp. 129–157.
|
[47] | Scholthof K-BG, Adkins S, Czosnek H, Palukaitis P, Jacquot E, et al. (2011) Top 10 plant viruses in molecular plant pathology. Mol Plant Pathol 12: 938–954. doi: 10.1111/j.1364-3703.2011.00752.x. pmid:22017770
|
[48] | Kormelink R, Garcia ML, Goodin M, Sasaya T, Haenni AL (2011) Negative-strand RNA viruses: the plant-infecting counterparts. Virus Res 162: 184–202. doi: 10.1016/j.virusres.2011.09.028. pmid:21963660
|
[49] | Kormelink R, Storms M, Van Lent J, Peters D, Goldbach R (1994) Expression and subcellular location of the NSm protein of Tomato spotted wilt virus (TSWV), a putative viral movement protein. Virology 200: 56–65. pmid:8128638 doi: 10.1006/viro.1994.1162
|
[50] | Prins M, Storms MMH, Kormelink R, DeHaan P, Goldbach R (1997) Transgenic tobacco plants expressing the putative movement protein of Tomato spotted wilt tospovirus exhibit aberrations in growth and appearance. Transgenic Res 6: 245–251.
|
[51] | Li W, Lewandowski DJ, Hilf ME, Adkins S (2009) Identification of domains of the Tomato spotted wilt virus NSm protein involved in tubule formation, movement and symptomatology. Virology 390: 110–121. doi: 10.1016/j.virol.2009.04.027. pmid:19481775
|
[52] | Storms MMH, Kormelink R, Peters D, vanLent JWM, Goldbach RW (1995) The nonstructural NSm protein of Tomato spotted wilt virus induces tubular structures in plant and insect cells. Virology 214: 485–493. pmid:8553550 doi: 10.1006/viro.1995.0059
|
[53] | Lewandowski DJ, Adkins S (2005) The tubule-forming NSm protein from Tomato spotted wilt virus complements cell-to-cell and long-distance movement of Tobacco mosaic virus hybrids. Virology 342: 26–37. pmid:16112159 doi: 10.1016/j.virol.2005.06.050
|
[54] | Storms MMH, van der Schoot C, Prins M, Kormelink R, van Lent JWM, et al. (1998) A comparison of two methods of microinjection for assessing altered plasmodesmal gating in tissues expressing viral movement proteins. Plant J 13: 131–140. doi: 10.1046/j.1365-313x.1998.00007.x
|
[55] | Soellick T, Uhrig JF, Bucher GL, Kellmann JW, Schreier PH (2000) The movement protein NSm of Tomato spotted wilt tospovirus (TSWV): RNA binding, interaction with the TSWV N protein, and identification of interacting plant proteins. Proc Natl Acad Sci U S A 97: 2373–2378. pmid:10688879 doi: 10.1073/pnas.030548397
|
[56] | Shen Y, Zhao X, Yao M, Li C, Miriam K, et al. (2014) A versatile complementation assay for cell-to-cell and long distance movements by Cucumber mosaic virus based agro-infiltration. Virus Res 190: 25–33. doi: 10.1016/j.virusres.2014.06.013. pmid:25014544
|
[57] | Paape M, Solovyev AG, Erokhina TN, Minina EA, Schepetilnikov MV, et al. (2006) At-4/1, an interactor of the Tomato spotted wilt virus movement protein, belongs to a new family of plant proteins capable of directed intra- and intercellular trafficking. Mol Plant Microbe Interact 19: 874–883. pmid:16903353 doi: 10.1094/mpmi-19-0874
|
[58] | Leastro MO, Pallas V, Resende RO, Sanchez-Navarro JA (2015) The movement proteins (NSm) of distinct tospoviruses peripherally associate with cellular membranes and interact with homologous and heterologous NSm and nucleocapsid proteins. Virology 478: 39–49. doi: 10.1016/j.virol.2015.01.031. pmid:25705793
|
[59] | Chen J, Doyle C, Qi X, Zheng H (2012) The endoplasmic reticulum: a social network in plant cells. J Integr Plant Biol 54: 840–850. doi: 10.1111/j.1744-7909.2012.01176.x. pmid:23046093
|
[60] | Snider C, Jayasinghe S, Hristova K, White SH (2009) MPEx: a tool for exploring membrane proteins. Protein Sci 18: 2624–2628. doi: 10.1002/pro.256. pmid:19785006
|
[61] | Cserzo M, Eisenhaber F, Eisenhaber B, Simon I (2002) On filtering false positive transmembrane protein predictions. Protein Eng 15: 745–752. pmid:12456873 doi: 10.1093/protein/15.9.745
|
[62] | Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J Mol Biol 305: 567–580. pmid:11152613 doi: 10.1006/jmbi.2000.4315
|
[63] | Hessa T, Meindl-Beinker NM, Bernsel A, Kim H, Sato Y, et al. (2007) Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 450: 1026–1030. pmid:18075582 doi: 10.1038/nature06387
|
[64] | Martinez-Gil L, Johnson AE, Mingarro I (2010) Membrane insertion and biogenesis of the Turnip crinkle virus p9 movement protein. J Virol 84: 5520–5527. doi: 10.1128/JVI.00125-10. pmid:20335263
|
[65] | Martinez-Gil L, Sanchez-Navarro JA, Cruz A, Pallas V, Perez-Gil J, et al. (2009) Plant virus cell-to-cell movement is not dependent on the transmembrane disposition of its movement protein. J Virol 83: 5535–5543. doi: 10.1128/JVI.00393-09. pmid:19321624
|
[66] | Peiró A, Martínez-Gil L, Tamborero S, Pallás V, Sánchez-Navarro JA, et al. (2014) The Tobacco mosaic virus movement protein associates with but does not integrate into biological membranes. J Virol 88: 3016–3026. doi: 10.1128/JVI.03648-13. pmid:24371064
|
[67] | Martinez-Gil L, Sauri A, Vilar M, Pallas V, Mingarro I (2007) Membrane insertion and topology of the p7B movement protein of Melon necrotic spot virus (MNSV). Virology 367: 348–357. pmid:17610929 doi: 10.1016/j.virol.2007.06.006
|
[68] | Hessa T, Kim H, Bihlmaier K, Lundin C, Boekel J, et al. (2005) Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433: 377–381. pmid:15674282 doi: 10.1038/nature03216
|
[69] | Martinez-Gil L, Bano-Polo M, Redondo N, Sanchez-Martinez S, Luis Nieva J, et al. (2011) Membrane integration of poliovirus 2B viroporin. J Virol 85: 11315–11324. doi: 10.1128/JVI.05421-11. pmid:21835803
|
[70] | Bano-Polo M, Martinez-Gil L, Wallner B, Nieva JL, Elofsson A, et al. (2013) Charge pair interactions in transmembrane helices and turn propensity of the connecting sequence promote helical hairpin insertion. J Mol Biol 425: 830–840. doi: 10.1016/j.jmb.2012.12.001. pmid:23228331
|
[71] | Schaad MC, Jensen PE, Carrington JC (1997) Formation of plant RNA virus replication complexes on membranes: role of an endoplasmic reticulum-targeted viral protein. EMBO J 16: 4049–4059. pmid:9233814 doi: 10.1093/emboj/16.13.4049
|
[72] | Krishnamurthy K, Heppler M, Mitra R, Blancaflor E, Payton M, et al. (2003) The Potato virus X TGBp3 protein associates with the ER network for virus cell-to-cell movement. Virology 309: 135–151. pmid:12726734 doi: 10.1016/s0042-6822(02)00102-2
|
[73] | Morozov SY, Solovyev AG (2003) Triple gene block: modular design of a multifunctional machine for plant virus movement. J Gen Virol 84: 1351–1366. pmid:12771402 doi: 10.1099/vir.0.18922-0
|
[74] | Bordier C (1981) Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem 256: 1604–1607. pmid:6257680
|
[75] | Peremyslov VV, Pan YW, Dolja VV (2004) Movement protein of a closterovirus is a type III integral transmembrane protein localized to the endoplasmic reticulum. J Virol 78: 3704–3709. pmid:15016890 doi: 10.1128/jvi.78.7.3704-3709.2004
|
[76] | Atkins D, Hull R, Wells B, Roberts K, Moore P, et al. (1991) The Tobacco mosaic virus-30K movement protein in transgenic tobacco plants is localized to plasmodesmata. J Gen Virol 72: 209–211. pmid:1990065 doi: 10.1099/0022-1317-72-1-209
|
[77] | Barlowe C (2003) Signals for COPII-dependent export from the ER: what's the ticket out? Trends Cell Biol 13: 295–300. pmid:12791295 doi: 10.1016/s0962-8924(03)00082-5
|
[78] | Hanton SL, Renna L, Bortolotti LE, Chatre L, Stefano G, et al. (2005) Diacidic motifs influence the export of transmembrane proteins from the endoplasmic reticulum in plant cells. Plant Cell 17: 3081–3093. pmid:16214902 doi: 10.1105/tpc.105.034900
|
[79] | Schoelz JE, Harries PA, Nelson RS (2011) Intracellular transport of plant viruses: finding the door out of the cell. Mol Plant 4: 813–831. doi: 10.1093/mp/ssr070. pmid:21896501
|
[80] | Ishikawa K, Miura C, Maejima K, Komatsu K, Hashimoto M, et al. (2015) Nucleocapsid protein from Fig mosaic virus forms cytoplasmic agglomerates that are hauled by endoplasmic reticulum streaming. J Virol 89: 480–491. doi: 10.1128/JVI.02527-14. pmid:25320328
|
[81] | Crawford KM, Zambryski PC (2000) Subcellular localization determines the availability of non-targeted proteins to plasmodesmatal transport. Curr Biol 10: 1032–1040. pmid:10996070 doi: 10.1016/s0960-9822(00)00657-6
|
[82] | Itaya A, Liang G, Woo YM, Nelsom RS, Ding B (2000) Nonspecific intercellular protein trafficking probed by green-fluorescent protein in plants. Protoplasma 213: 165–175. doi: 10.1007/bf01282154
|
[83] | Saint-Jore CM, Evins J, Batoko H, Brandizzi F, Moore I, et al. (2002) Redistribution of membrane proteins between the golgi apparatus and endoplasmic reticulum in plants is reversible and not dependent on cytoskeletal networks. Plant J 29: 661–678. pmid:11874578 doi: 10.1046/j.0960-7412.2002.01252.x
|
[84] | Radford J, White R (2011) Inhibitors of myosin, but not actin, alter transport through Tradescantia plasmodesmata. Protoplasma 248: 205–216. doi: 10.1007/s00709-010-0244-3. pmid:21113638
|
[85] | Feng Z, Chen X, Bao Y, Dong J, Zhang Z, et al. (2013) Nucleocapsid of Tomato spotted wilt tospovirus forms mobile particles that traffic on an actin/endoplasmic reticulum network driven by myosin XI-K. New Phytol 200: 1212–1224. doi: 10.1111/nph.12447. pmid:24032608
|
[86] | Hu J, Shibata Y, Zhu PP, Voss C, Rismanchi N, et al. (2009) A class of dynamin-like GTPases involved in the generation of the tubular ER network. Cell 138: 549–561. doi: 10.1016/j.cell.2009.05.025. pmid:19665976
|
[87] | Orso G, Pendin D, Liu S, Tosetto J, Moss TJ, et al. (2009) Homotypic fusion of ER membranes requires the dynamin-like GTPase atlastin. Nature 460: 978–983. doi: 10.1038/nature08280. pmid:19633650
|
[88] | Chen J, Stefano G, Brandizzi F, Zheng H (2011) Arabidopsis RHD3 mediates the generation of the tubular ER network and is required for golgi distribution and motility in plant cells. J Cell Sci 124: 2241–2252. doi: 10.1242/jcs.084624. pmid:21652628
|
[89] | Zhang M, Wu F, Shi J, Zhu Y, Zhu Z, et al. (2013) ROOT HAIR DEFECTIVE3 family of dynamin-like GTPases mediates homotypic endoplasmic reticulum fusion and is essential for Arabidopsis development. Plant Physiol 163: 713–720. doi: 10.1104/pp.113.224501. pmid:23922269
|
[90] | Singh P, Savithri HS (2015) GBNV encoded movement protein (NSm) remodels ER network via C-terminal coiled coil domain. Virology 482: 133–146. doi: 10.1016/j.virol.2015.01.030. pmid:25863878
|
[91] | Liu JZ, Blancaflor EB, Nelson RS (2005) The Tobacco mosaic virus 126-kilodalton protein, a constituent of the virus replication complex, alone or within the complex aligns with and traffics along microfilaments. Plant Physiol 138: 1853–1865. pmid:16040646 doi: 10.1104/pp.105.065722
|
[92] | Guenoune-Gelbart D, Elbaum M, Sagi G, Levy A, Epel BL (2008) Tobacco mosaic virus (TMV) replicase and movement protein function synergistically in facilitating TMV spread by lateral diffusion in the plasmodesmal desmotubule of Nicotiana benthamiana. Mol Plant Microbe Interact 21: 335–345. doi: 10.1094/MPMI-21-3-0335. pmid:18257683
|
[93] | Nelson BK, Cai X, Nebenfuehr A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51: 1126–1136. pmid:17666025 doi: 10.1111/j.1365-313x.2007.03212.x
|
[94] | Kikkert M, van Poelwijk F, Storms M, Kassies W, Bloksma H, et al. (1997) A protoplast system for studying Tomato spotted wilt virus infection. J Gen Virol 78: 1755–1763. pmid:9225052 doi: 10.1099/0022-1317-78-7-1755
|
[95] | Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2: 1565–1572. pmid:17585298 doi: 10.1038/nprot.2007.199
|