全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Adenovirus E4orf4 Protein Provides a Novel Mechanism for Inhibition of the DNA Damage Response

DOI: 10.1371/journal.ppat.1005420

Full-Text   Cite this paper   Add to My Lib

Abstract:

The DNA damage response (DDR) is a conglomerate of pathways designed to detect DNA damage and signal its presence to cell cycle checkpoints and to the repair machinery, allowing the cell to pause and mend the damage, or if the damage is too severe, to trigger apoptosis or senescence. Various DDR branches are regulated by kinases of the phosphatidylinositol 3-kinase-like protein kinase family, including ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR). Replication intermediates and linear double-stranded genomes of DNA viruses are perceived by the cell as DNA damage and activate the DDR. If allowed to operate, the DDR will stimulate ligation of viral genomes and will inhibit virus replication. To prevent this outcome, many DNA viruses evolved ways to limit the DDR. As part of its attack on the DDR, adenovirus utilizes various viral proteins to cause degradation of DDR proteins and to sequester the MRN damage sensor outside virus replication centers. Here we show that adenovirus evolved yet another novel mechanism to inhibit the DDR. The E4orf4 protein, together with its cellular partner PP2A, reduces phosphorylation of ATM and ATR substrates in virus-infected cells and in cells treated with DNA damaging drugs, and causes accumulation of damaged DNA in the drug-treated cells. ATM and ATR are not mutually required for inhibition of their signaling pathways by E4orf4. ATM and ATR deficiency as well as E4orf4 expression enhance infection efficiency. Furthermore, E4orf4, previously reported to induce cancer-specific cell death when expressed alone, sensitizes cells to killing by sub-lethal concentrations of DNA damaging drugs, likely because it inhibits DNA damage repair. These findings provide one explanation for the cancer-specificity of E4orf4-induced cell death as many cancers have DDR deficiencies leading to increased reliance on the remaining intact DDR pathways and to enhanced susceptibility to DDR inhibitors such as E4orf4. Thus DDR inhibition by E4orf4 contributes both to the efficiency of adenovirus replication and to the ability of E4orf4 to kill cancer cells.

References

[1]  Bartek J, Lukas J. Mammalian G1- and S-phase checkpoints in response to DNA damage. Current opinion in cell biology. 2001;13(6):738–47. Epub 2001/11/08. doi: S0955-0674(00)00280-5 [pii]. pmid:11698191. doi: 10.1016/s0955-0674(00)00280-5
[2]  Zhou BB, Elledge SJ. The DNA damage response: putting checkpoints in perspective. Nature. 2000;408(6811):433–9. Epub 2000/12/02. doi: 10.1038/35044005 pmid:11100718.
[3]  Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG. PARP inhibition: PARP1 and beyond. Nature reviews. 2010;10(4):293–301. Epub 2010/03/05. doi: 10.1038/nrc2812 nrc2812 [pii]. pmid:20200537; PubMed Central PMCID: PMC2910902.
[4]  Gibson BA, Kraus WL. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat Rev Mol Cell Biol. 2012;13(7):411–24. Epub 2012/06/21. doi: 10.1038/nrm3376 nrm3376 [pii]. pmid:22713970.
[5]  Davis AJ, Chen BP, Chen DJ. DNA-PK: a dynamic enzyme in a versatile DSB repair pathway. DNA Repair (Amst). 2014;17:21–9. Epub 2014/04/01. doi: 10.1016/j.dnarep.2014.02.020S1568-7864(14)00061-5 [pii]. pmid:24680878; PubMed Central PMCID: PMC4032623.
[6]  Carson CT, Schwartz RA, Stracker TH, Lilley CE, Lee DV, Weitzman MD. The Mre11 complex is required for ATM activation and the G2/M checkpoint. The EMBO journal. 2003;22(24):6610–20. Epub 2003/12/06. doi: 10.1093/emboj/cdg630 pmid:14657032; PubMed Central PMCID: PMC291825.
[7]  Lavin MF. ATM and the Mre11 complex combine to recognize and signal DNA double-strand breaks. Oncogene. 2007;26(56):7749–58. Epub 2007/12/11. doi: 1210880 [pii] doi: 10.1038/sj.onc.1210880 pmid:18066087.
[8]  Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, Shiloh Y. Requirement of the MRN complex for ATM activation by DNA damage. The EMBO journal. 2003;22(20):5612–21. Epub 2003/10/09. doi: 10.1093/emboj/cdg541 pmid:14532133; PubMed Central PMCID: PMC213795.
[9]  Lukas C, Falck J, Bartkova J, Bartek J, Lukas J. Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nature cell biology. 2003;5(3):255–60. Epub 2003/02/25. doi: 10.1038/ncb945 ncb945 [pii]. pmid:12598907.
[10]  Sirbu BM, Cortez D. DNA damage response: three levels of DNA repair regulation. Cold Spring Harb Perspect Biol. 2013;5(8):a012724. Epub 2013/07/03. doi: 10.1101/cshperspect.a012724 a012724 [pii] cshperspect.a012724 [pii]. pmid:23813586; PubMed Central PMCID: PMC3721278.
[11]  Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Molecular cell. 2010;40(2):179–204. Epub 2010/10/23. doi: S1097-2765(10)00747-1 [pii] doi: 10.1016/j.molcel.2010.09.019 pmid:20965415; PubMed Central PMCID: PMC2988877.
[12]  Polo SE, Jackson SP. Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes & development. 2011;25(5):409–33. Epub 2011/03/03. doi: 10.1101/gad.2021311 25/5/409 [pii]. pmid:21363960; PubMed Central PMCID: PMC3049283.
[13]  Sents W, Ivanova E, Lambrecht C, Haesen D, Janssens V. The biogenesis of active protein phosphatase 2A holoenzymes: a tightly regulated process creating phosphatase specificity. FEBS J. 2013;280(2):644–61. Epub 2012/03/27. doi: 10.1111/j.1742-4658.2012.08579.x pmid:22443683.
[14]  Douglas P, Moorhead GB, Ye R, Lees-Miller SP. Protein phosphatases regulate DNA-dependent protein kinase activity. The Journal of biological chemistry. 2001;276(22):18992–8. pmid:11376007 doi: 10.1074/jbc.m011703200
[15]  Goodarzi AA, Jonnalagadda JC, Douglas P, Young D, Ye R, Moorhead GB, et al. Autophosphorylation of ataxia-telangiectasia mutated is regulated by protein phosphatase 2A. The EMBO journal. 2004;23(22):4451–61. Epub 2004/10/29. doi: 7600455 [pii] doi: 10.1038/sj.emboj.7600455 pmid:15510216; PubMed Central PMCID: PMC526470.
[16]  Li G, Elder RT, Qin K, Park HU, Liang D, Zhao RY. Phosphatase type 2A-dependent and -independent pathways for ATR phosphorylation of Chk1. The Journal of biological chemistry. 2007;282(10):7287–98. Epub 2007/01/11. doi: M607951200 [pii] doi: 10.1074/jbc.M607951200 pmid:17210576.
[17]  Petersen P, Chou DM, You Z, Hunter T, Walter JC, Walter G. Protein phosphatase 2A antagonizes ATM and ATR in a Cdk2- and Cdc7-independent DNA damage checkpoint. Molecular and cellular biology. 2006;26(5):1997–2011. Epub 2006/02/16. doi: 26/5/1997 [pii] doi: 10.1128/MCB.26.5.1997–2011.2006 pmid:16479016; PubMed Central PMCID: PMC1430240.
[18]  Wang Q, Gao F, Wang T, Flagg T, Deng X. A nonhomologous end-joining pathway is required for protein phosphatase 2A promotion of DNA double-strand break repair. Neoplasia. 2009;11(10):1012–21. Epub 2009/10/02. pmid:19794960; PubMed Central PMCID: PMC2745667. doi: 10.1593/neo.09720
[19]  Chowdhury D, Keogh MC, Ishii H, Peterson CL, Buratowski S, Lieberman J. gamma-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair. Molecular cell. 2005;20(5):801–9. Epub 2005/11/29. doi: S1097-2765(05)01673-4 [pii] doi: 10.1016/j.molcel.2005.10.003 pmid:16310392.
[20]  Dozier C, Bonyadi M, Baricault L, Tonasso L, Darbon JM. Regulation of Chk2 phosphorylation by interaction with protein phosphatase 2A via its B' regulatory subunit. Biol Cell. 2004;96(7):509–17. Epub 2004/09/24. doi: 10.1016/j.biolcel.2004.04.010S0248490004001078 [pii]. pmid:15380617.
[21]  Freeman AK, Dapic V, Monteiro AN. Negative regulation of CHK2 activity by protein phosphatase 2A is modulated by DNA damage. Cell cycle (Georgetown, Tex. 2010;9(4):736–47. Epub 2010/02/18. doi: 10613 [pii]. pmid:20160490; PubMed Central PMCID: PMC3040716. doi: 10.4161/cc.9.4.10613
[22]  Leung-Pineda V, Ryan CE, Piwnica-Worms H. Phosphorylation of Chk1 by ATR is antagonized by a Chk1-regulated protein phosphatase 2A circuit. Molecular and cellular biology. 2006;26(20):7529–38. Epub 2006/10/04. doi: MCB.00447-06 [pii] doi: 10.1128/MCB.00447-06 pmid:17015476; PubMed Central PMCID: PMC1636880.
[23]  Liang X, Reed E, Yu JJ. Protein phosphatase 2A interacts with Chk2 and regulates phosphorylation at Thr-68 after cisplatin treatment of human ovarian cancer cells. Int J Mol Med. 2006;17(5):703–8. Epub 2006/04/06. pmid:16596250. doi: 10.3892/ijmm.17.5.703
[24]  Yan Y, Cao PT, Greer PM, Nagengast ES, Kolb RH, Mumby MC, et al. Protein phosphatase 2A has an essential role in the activation of gamma-irradiation-induced G2/M checkpoint response. Oncogene. 2010;29(30):4317–29. Epub 2010/05/26. doi: onc2010187 [pii] doi: 10.1038/onc.2010.187 pmid:20498628.
[25]  Weitzman MD, Lilley CE, Chaurushiya MS. Genomes in conflict: maintaining genome integrity during virus infection. Annu Rev Microbiol. 2010;64:61–81. Epub 2010/08/10. doi: 10.1146/annurev.micro.112408.134016 pmid:20690823.
[26]  Hollingworth R, Grand RJ. Modulation of DNA Damage and Repair Pathways by Human Tumour Viruses. Viruses. 2015;7(5):2542–91. Epub 2015/05/27. doi: v7052542 [pii] doi: 10.3390/v7052542 pmid:26008701; PubMed Central PMCID: PMC4452920.
[27]  Dahl J, You J, Benjamin TL. Induction and utilization of an ATM signaling pathway by polyomavirus. Journal of virology. 2005;79(20):13007–17. Epub 2005/09/29. doi: 79/20/13007 [pii] doi: 10.1128/JVI.79.20.13007–13017.2005 pmid:16189003; PubMed Central PMCID: PMC1235815.
[28]  Kudoh A, Fujita M, Zhang L, Shirata N, Daikoku T, Sugaya Y, et al. Epstein-Barr virus lytic replication elicits ATM checkpoint signal transduction while providing an S-phase-like cellular environment. The Journal of biological chemistry. 2005;280(9):8156–63. Epub 2004/12/22. doi: M411405200 [pii] doi: 10.1074/jbc.M411405200 pmid:15611093.
[29]  Lilley CE, Carson CT, Muotri AR, Gage FH, Weitzman MD. DNA repair proteins affect the lifecycle of herpes simplex virus 1. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(16):5844–9. Epub 2005/04/13. doi: 0501916102 [pii] doi: 10.1073/pnas.0501916102 pmid:15824307; PubMed Central PMCID: PMC556126.
[30]  Boyer J, Rohleder K, Ketner G. Adenovirus E4 34k and E4 11k inhibit double strand break repair and are physically associated with the cellular DNA-dependent protein kinase. Virology. 1999;263(2):307–12. Epub 1999/11/02. doi: 10.1006/viro.1999.9866S0042-6822(99)99866-5 [pii]. pmid:10544104.
[31]  Stracker TH, Carson CT, Weitzman MD. Adenovirus oncoproteins inactivate the Mre11-Rad50-NBS1 DNA repair complex. Nature. 2002;418(6895):348–52. Epub 2002/07/19. doi: 10.1038/nature00863 nature00863 [pii]. pmid:12124628.
[32]  Weiden MD, Ginsberg HS. Deletion of the E4 region of the genome produces adenovirus DNA concatemers. Proceedings of the National Academy of Sciences of the United States of America. 1994;91(1):153–7. Epub 1994/01/04. pmid:8278357; PubMed Central PMCID: PMC42904. doi: 10.1073/pnas.91.1.153
[33]  Forrester NA, Sedgwick GG, Thomas A, Blackford AN, Speiseder T, Dobner T, et al. Serotype-specific inactivation of the cellular DNA damage response during adenovirus infection. Journal of virology. 2011;85(5):2201–11. Epub 2010/12/17. doi: JVI.01748-10 [pii] doi: 10.1128/JVI.01748-10 pmid:21159879; PubMed Central PMCID: PMC3067775.
[34]  Baker A, Rohleder KJ, Hanakahi LA, Ketner G. Adenovirus E4 34k and E1b 55k oncoproteins target host DNA ligase IV for proteasomal degradation. Journal of virology. 2007;81(13):7034–40. Epub 2007/04/27. doi: JVI.00029-07 [pii] doi: 10.1128/JVI.00029-07 pmid:17459921; PubMed Central PMCID: PMC1933317.
[35]  Harada JN, Shevchenko A, Pallas DC, Berk AJ. Analysis of the adenovirus E1B-55K-anchored proteome reveals its link to ubiquitination machinery. Journal of virology. 2002;76(18):9194–206. Epub 2002/08/21. pmid:12186903; PubMed Central PMCID: PMC136464. doi: 10.1128/jvi.76.18.9194-9206.2002
[36]  Querido E, Blanchette P, Yan Q, Kamura T, Morrison M, Boivin D, et al. Degradation of p53 by adenovirus E4orf6 and E1B55K proteins occurs via a novel mechanism involving a Cullin-containing complex. Genes & development. 2001;15(23):3104–17. doi: 10.1101/gad.926401
[37]  Blackford AN, Patel RN, Forrester NA, Theil K, Groitl P, Stewart GS, et al. Adenovirus 12 E4orf6 inhibits ATR activation by promoting TOPBP1 degradation. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(27):12251–6. Epub 2010/06/23. doi: 0914605107 [pii] doi: 10.1073/pnas.0914605107 pmid:20566845; PubMed Central PMCID: PMC2901489.
[38]  Carson CT, Orazio NI, Lee DV, Suh J, Bekker-Jensen S, Araujo FD, et al. Mislocalization of the MRN complex prevents ATR signaling during adenovirus infection. The EMBO journal. 2009;28(6):652–62. Epub 2009/02/07. doi: emboj200915 [pii] doi: 10.1038/emboj.2009.15 pmid:19197236; PubMed Central PMCID: PMC2666027.
[39]  Evans JD, Hearing P. Relocalization of the Mre11-Rad50-Nbs1 complex by the adenovirus E4 ORF3 protein is required for viral replication. Journal of virology. 2005;79(10):6207–15. Epub 2005/04/29. doi: 79/10/6207 [pii] doi: 10.1128/JVI.79.10.6207–6215.2005 pmid:15858005; PubMed Central PMCID: PMC1091726.
[40]  Shah GA O'Shea CC. Viral and Cellular Genomes Activate Distinct DNA Damage Responses. Cell. 2015;162(5):987–1002. Epub 2015/09/01. doi: 10.1016/j.cell.2015.07.058 S0092-8674(15)00974-5 [pii]. pmid:26317467.
[41]  Karen KA, Hearing P. Adenovirus core protein VII protects the viral genome from a DNA damage response at early times after infection. Journal of virology. 2011;85(9):4135–42. Epub 2011/02/25. doi: JVI.02540-10 [pii] doi: 10.1128/JVI.02540-10 pmid:21345950; PubMed Central PMCID: PMC3126275.
[42]  Hart LS, Ornelles D, Koumenis C. The adenoviral E4orf6 protein induces atypical apoptosis in response to DNA damage. The Journal of biological chemistry. 2007;282(9):6061–7. Epub 2006/12/19. doi: M610405200 [pii] doi: 10.1074/jbc.M610405200 pmid:17172468.
[43]  Ben-Israel H, Sharf R, Rechavi G, Kleinberger T. Adenovirus E4orf4 protein downregulates MYC expression through interaction with the PP2A-B55 subunit. Journal of virology. 2008;82(19):9381–8. pmid:18653458. doi: 10.1128/JVI.00791-08.
[44]  Bondesson M, Ohman K, Mannervik M, Fan S, Akusjarvi G. Adenovirus E4 open reading 4 protein autoregulates E4 transcription by inhibiting E1A transactivation of the E4 promoter. J Virol. 1996;70:3844–51. pmid:8648720
[45]  Mannervik M, Fan S, Strom AC, Helin K, Akusjarvi G. Adenovirus E4 open reading frame 4-induced dephosphorylation inhibits E1A activation of the E2 promoter and E2F-1-mediated transactivation independently of the retinoblastoma tumor suppressor protein. Virology. 1999;256:313–21. pmid:10191196 doi: 10.1006/viro.1999.9663
[46]  Muller U, Kleinberger T, Shenk T. Adenovirus E4orf4 protein reduces phosphorylation of c-fos and E1A proteins while simultaneously reducing the level of AP-1. J Virol. 1992;66:5867–78. pmid:1326648
[47]  Estmer Nilsson C, Petersen-Mahrt S, Durot C, Shtrichman R, Krainer AR, Kleinberger T, et al. The adenovirus E4-ORF4 splicing enhancer protein interacts with a subset of phosphorylated SR proteins. The EMBO journal. 2001;20(4):864–71. pmid:11179230 doi: 10.1093/emboj/20.4.864
[48]  Kanopka A, Muhlemann O, Petersen-Mahrt S, Estmer C, Ohrmalm C, Akusjarvi G. Regulation of adenovirus alternative RNA splicing by dephosphorylation of SR proteins. Nature. 1998. doi: 10.1038/30277
[49]  O'Shea C, Klupsch K, Choi S, Bagus B, Soria C, Shen J, et al. Adenoviral proteins mimic nutrient/growth signals to activate the mTOR pathway for viral replication. The EMBO journal. 2005;24(6):1211–21. pmid:15775987. doi: 10.1038/sj.emboj.7600597
[50]  Kleinberger T. Induction of cancer-specific cell death by the adenovirus e4orf4 protein. Adv Exp Med Biol. 2014;818:61–97. Epub 2014/07/09. doi: 10.1007/978-1-4471-6458-6_4 pmid:25001532.
[51]  Lavoie JN, Nguyen M, Marcellus RC, Branton PE, Shore GC. E4orf4, a novel adenovirus death factor that induces p53-independent apoptosis by a pathway that is not inhibited by zVAD-fmk. J Cell Biol. 1998;140:637–45. pmid:9456323 doi: 10.1083/jcb.140.3.637
[52]  Livne A, Shtrichman R, Kleinberger T. Caspase activation by adenovirus E4orf4 protein is cell line-specific and is mediated by the death receptor pathway. J Virol. 2001;75:789–98. pmid:11134292 doi: 10.1128/jvi.75.2.789-798.2001
[53]  Marcellus RC, Lavoie JN, Boivin D, Shore GC, Ketner G, Branton PE. The early region 4 orf4 protein of human adenovirus type 5 induces p53-independent cell death by apoptosis. J Virol. 1998;72:7144–53. pmid:9696808
[54]  Shtrichman R, Kleinberger T. Adenovirus type 5 E4 open reading frame 4 protein induces apoptosis in transformed cells. J Virol. 1998;72:2975–82. pmid:9525619
[55]  Afifi R, Sharf R, Shtrichman R, Kleinberger T. Selection of apoptosis-deficient adenovirus E4orf4 mutants in S. cerevisiae. J Virol. 2001;75:4444–7. pmid:11287598 doi: 10.1128/jvi.75.9.4444-4447.2001
[56]  Kornitzer D, Sharf R, Kleinberger T. Adenovirus E4orf4 protein induces PP2A-dependent growth arrest in S. cerevisiae and interacts with the anaphase promoting complex/cyclosome. J Cell Biol. 2001;154:331–44. pmid:11470822 doi: 10.1083/jcb.200104104
[57]  Maoz T, Koren R, Ben-Ari I, Kleinberger T. YND1 interacts with CDC55 and is a novel mediator of E4orf4-induced toxicity. The Journal of biological chemistry. 2005;280:41270–7. pmid:16227198 doi: 10.1074/jbc.m507281200
[58]  Roopchand DE, Lee JM, Shahinian S, Paquette D, Bussey H, Branton PE. Toxicity of human adenovirus E4orf4 protein in Saccharomyces cerevisiae results from interactions with the Cdc55 regulatory B subunit of PP2A. Oncogene. 2001;20(38):5279–90. pmid:11536041 doi: 10.1038/sj.onc.1204693
[59]  Pechkovsky A, Lahav M, Bitman E, Salzberg A, Kleinberger T. E4orf4 induces PP2A- and Src-dependent cell death in Drosophila melanogaster and at the same time inhibits classic apoptosis pathways. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(19):E1724–33. Epub 2013/04/25. doi: 10.1073/pnas.1220282110 1220282110 [pii]. pmid:23613593.
[60]  Shtrichman R, Sharf R, Barr H, Dobner T, Kleinberger T. Induction of apoptosis by adenovirus E4orf4 protein is specific to transformed cells and requires an interaction with protein phosphatase 2A. Proc Natl Acad Sci USA. 1999;96:10080–5. pmid:10468565 doi: 10.1073/pnas.96.18.10080
[61]  Kleinberger T. Mechanisms of Cancer Cell Killing by the Adenovirus E4orf4 Protein. Viruses. 2015;7(5):2334–57. Epub 2015/05/12. doi: v7052334 [pii] doi: 10.3390/v7052334 pmid:25961489; PubMed Central PMCID: PMC4452909.
[62]  Kleinberger T, Shenk T. Adenovirus E4orf4 protein binds to protein phosphatase 2A, and the complex down regulates E1A-enhanced junB transcription. Journal of virology. 1993;67:7556–60. pmid:8230475
[63]  Marcellus RC, Chan H, Paquette D, Thirlwell S, Boivin D, Branton PE. Induction of p53-independent apoptosis by the adenovirus E4orf4 protein requires binding to the Balpha subunit of protein phosphatase 2A. Journal of virology. 2000;74(17):7869–77. pmid:10933694 doi: 10.1128/jvi.74.17.7869-7877.2000
[64]  Shtrichman R, Sharf R, Kleinberger T. Adenovirus E4orf4 protein interacts with both Bα and B' subunits of protein phosphatase 2A, but E4orf4-induced apoptosis is mediated only by the interaction with Bα. Oncogene. 2000;19:3757–65. pmid:10949930 doi: 10.1038/sj.onc.1203705
[65]  Huang MM, Hearing P. Adenovirus early region 4 encodes two gene products with redundant effects in lytic infection. Journal of virology. 1989;63(6):2605–15. pmid:2724411.
[66]  Nichols GJ, Schaack J, Ornelles DA. Widespread phosphorylation of histone H2AX by species C adenovirus infection requires viral DNA replication. Journal of virology. 2009;83(12):5987–98. Epub 2009/03/27. doi: 10.1128/JVI.00091-09 JVI.00091-09 [pii]. pmid:19321613; PubMed Central PMCID: PMC2687384.
[67]  Dhawan A, Bajpayee M, Parmar D. Comet assay: a reliable tool for the assessment of DNA damage in different models. Cell Biol Toxicol. 2009;25(1):5–32. Epub 2008/04/23. doi: 10.1007/s10565-008-9072-z pmid:18427939.
[68]  Jazayeri A, Falck J, Lukas C, Bartek J, Smith GC, Lukas J, et al. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nature cell biology. 2006;8(1):37–45. Epub 2005/12/06. doi: ncb1337 [pii] doi: 10.1038/ncb1337 pmid:16327781.
[69]  Myers JS, Cortez D. Rapid activation of ATR by ionizing radiation requires ATM and Mre11. The Journal of biological chemistry. 2006;281(14):9346–50. Epub 2006/01/25. doi: M513265200 [pii] doi: 10.1074/jbc.M513265200 pmid:16431910; PubMed Central PMCID: PMC1821075.
[70]  Toledo LI, Murga M, Zur R, Soria R, Rodriguez A, Martinez S, et al. A cell-based screen identifies ATR inhibitors with synthetic lethal properties for cancer-associated mutations. Nature structural & molecular biology. 2011;18(6):721–7. Epub 2011/05/10. doi: 10.1038/nsmb.2076 nsmb.2076 [pii]. pmid:21552262.
[71]  Ziv Y, Bar-Shira A, Pecker I, Russell P, Jorgensen TJ, Tsarfati I, et al. Recombinant ATM protein complements the cellular A-T phenotype. Oncogene. 1997;15(2):159–67. Epub 1997/07/10. doi: 10.1038/sj.onc.1201319 pmid:9244351.
[72]  Krzywinski M, Altman N. Visualizing samples with box plots. Nat Methods. 2014;11(2):119–20. Epub 2014/03/20. pmid:24645192. doi: 10.1038/nmeth.2813
[73]  Turner RL, Wilkinson JC, Ornelles DA. E1B and E4 oncoproteins of adenovirus antagonize the effect of apoptosis inducing factor. Virology. 2014;456–457:205–19. Epub 2014/06/04. doi: 10.1016/j.virol.2014.03.010 S0042-6822(14)00092-0 [pii]. pmid:24889240; PubMed Central PMCID: PMC4044614.
[74]  Lee DH, Chowdhury D. What goes on must come off: phosphatases gate-crash the DNA damage response. Trends in biochemical sciences. 2011;36(11):569–77. Epub 2011/09/21. doi: S0968-0004(11)00136-8 [pii] doi: 10.1016/j.tibs.2011.08.007 pmid:21930385.
[75]  Olson E, Nievera CJ, Lee AY, Chen L, Wu X. The Mre11-Rad50-Nbs1 complex acts both upstream and downstream of ataxia telangiectasia mutated and Rad3-related protein (ATR) to regulate the S-phase checkpoint following UV treatment. The Journal of biological chemistry. 2007;282(31):22939–52. Epub 2007/05/29. doi: M702162200 [pii] doi: 10.1074/jbc.M702162200 pmid:17526493.
[76]  Haince JF, Kozlov S, Dawson VL, Dawson TM, Hendzel MJ, Lavin MF, et al. Ataxia telangiectasia mutated (ATM) signaling network is modulated by a novel poly(ADP-ribose)-dependent pathway in the early response to DNA-damaging agents. The Journal of biological chemistry. 2007;282(22):16441–53. Epub 2007/04/13. doi: M608406200 [pii] doi: 10.1074/jbc.M608406200 pmid:17428792.
[77]  Kedar PS, Stefanick DF, Horton JK, Wilson SH. Interaction between PARP-1 and ATR in mouse fibroblasts is blocked by PARP inhibition. DNA Repair (Amst). 2008;7(11):1787–98. Epub 2008/08/12. doi: 10.1016/j.dnarep.2008.07.006 S1568-7864(08)00257-7 [pii]. pmid:18691676; PubMed Central PMCID: PMC2585487.
[78]  Gautam D, Bridge E. The kinase activity of ataxia-telangiectasia mutated interferes with adenovirus E4 mutant DNA replication. Journal of virology. 2013;87(15):8687–96. Epub 2013/06/07. doi: 10.1128/JVI.00376-13 JVI.00376-13 [pii]. pmid:23740981; PubMed Central PMCID: PMC3719797.
[79]  Lakdawala SS, Schwartz RA, Ferenchak K, Carson CT, McSharry BP, Wilkinson GW, et al. Differential requirements of the C terminus of Nbs1 in suppressing adenovirus DNA replication and promoting concatemer formation. Journal of virology. 2008;82(17):8362–72. Epub 2008/06/20. doi: 10.1128/JVI.00900-08 JVI.00900-08 [pii]. pmid:18562516; PubMed Central PMCID: PMC2519655.
[80]  Bridge E, Ketner G. Redundant control of adenovirus late gene expression by early region 4. J Virol. 1989;63:631–8. pmid:2911117
[81]  Katzenberger RJ, Marengo MS, Wassarman DA. ATM and ATR pathways signal alternative splicing of Drosophila TAF1 pre-mRNA in response to DNA damage. Molecular and cellular biology. 2006;26(24):9256–67. Epub 2006/10/13. doi: MCB.01125-06 [pii] doi: 10.1128/MCB.01125-06 pmid:17030624; PubMed Central PMCID: PMC1698527.
[82]  Goode EL, Ulrich CM, Potter JD. Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol Biomarkers Prev. 2002;11(12):1513–30. Epub 2002/12/24. pmid:12496039.
[83]  Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability—an evolving hallmark of cancer. Nat Rev Mol Cell Biol. 2010;11(3):220–8. Epub 2010/02/24. doi: 10.1038/nrm2858 nrm2858 [pii]. pmid:20177397.
[84]  Weber AM, Ryan AJ. ATM and ATR as therapeutic targets in cancer. Pharmacol Ther. 2015;149:124–38. Epub 2014/12/17. doi: 10.1016/j.pharmthera.2014.12.001 S0163-7258(14)00230-7 [pii]. pmid:25512053.
[85]  Lion T. Adenovirus infections in immunocompetent and immunocompromised patients. Clin Microbiol Rev. 2014;27(3):441–62. Epub 2014/07/02. doi: 10.1128/CMR.00116-13 27/3/441 [pii]. pmid:24982316; PubMed Central PMCID: PMC4135893.
[86]  Van Kanegan MJ, Adams DG, Wadzinski BE, Strack S. Distinct protein phosphatase 2A heterotrimers modulate growth factor signaling to extracellular signal-regulated kinases and Akt. The Journal of biological chemistry. 2005;280(43):36029–36. Epub 2005 Aug 28. pmid:16129692 doi: 10.1074/jbc.m506986200
[87]  Gitay-Goren H, Soker S, Vlodavsky I, Neufeld G. The binding of vascular endothelial growth factor to its receptors is dependent on cell surface-associated heparin-like molecules. The Journal of biological chemistry. 1992;267(9):6093–8. Epub 1992/03/25. pmid:1556117.
[88]  Weinberg DH, Ketner G. Adenoviral early region 4 is required for efficient viral DNA replication and for late gene expression. Journal of virology. 1986;57(3):833–8. Epub 1986/03/01. pmid:3485200; PubMed Central PMCID: PMC252812.
[89]  Schreiner S, Burck C, Glass M, Groitl P, Wimmer P, Kinkley S, et al. Control of human adenovirus type 5 gene expression by cellular Daxx/ATRX chromatin-associated complexes. Nucleic acids research. 2013;41(6):3532–50. Epub 2013/02/12. doi: 10.1093/nar/gkt064 gkt064 [pii]. pmid:23396441; PubMed Central PMCID: PMC3616723.
[90]  Reich NC, Sarnow P, Duprey E, Levine AJ. Monoclonal antibodies which recognize native and denatured forms of the adenovirus DNA-binding protein. Virology. 1983;128(2):480–4. pmid:6310869. doi: 10.1016/0042-6822(83)90274-x
[91]  Sarnow P, Sullivan CA, Levine AJ. A monoclonal antibody detecting the adenovirus type 5-E1b-58Kd tumor antigen: characterization of the E1b-58Kd tumor antigen in adenovirus-infected and -transformed cells. Virology. 1982;120(2):510–7. Epub 1982/07/30. doi: 0042-6822(82)90054-X [pii]. pmid:7048730. doi: 10.1016/0042-6822(82)90054-x
[92]  Nowsheen S, Xia F, Yang ES. Assaying DNA damage in hippocampal neurons using the comet assay. J Vis Exp. 2012;(70):e50049. Epub 2012/12/29. doi: 10.3791/50049 50049 [pii]. pmid:23271144; PubMed Central PMCID: PMC3576424.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133