Resistance to Bacillus thuringiensis Mediated by an ABC Transporter Mutation Increases Susceptibility to Toxins from Other Bacteria in an Invasive Insect
Evolution of pest resistance reduces the efficacy of insecticidal proteins from the gram-positive bacterium Bacillus thuringiensis (Bt) used widely in sprays and transgenic crops. Recent efforts to delay pest adaptation to Bt crops focus primarily on combinations of two or more Bt toxins that kill the same pest, but this approach is often compromised because resistance to one Bt toxin causes cross-resistance to others. Thus, integration of Bt toxins with alternative controls that do not exhibit such cross-resistance is urgently needed. The ideal scenario of negative cross-resistance, where selection for resistance to a Bt toxin increases susceptibility to alternative controls, has been elusive. Here we discovered that selection of the global crop pest, Helicoverpa armigera, for >1000-fold resistance to Bt toxin Cry1Ac increased susceptibility to abamectin and spineotram, insecticides derived from the soil bacteria Streptomyces avermitilis and Saccharopolyspora spinosa, respectively. Resistance to Cry1Ac did not affect susceptibility to the cyclodiene, organophospate, or pyrethroid insecticides tested. Whereas previous work demonstrated that the resistance to Cry1Ac in the strain analyzed here is conferred by a mutation disrupting an ATP-binding cassette protein named ABCC2, the new results show that increased susceptibility to abamectin is genetically linked with the same mutation. Moreover, RNAi silencing of HaABCC2 not only decreased susceptibility to Cry1Ac, it also increased susceptibility to abamectin. The mutation disrupting ABCC2 reduced removal of abamectin in live larvae and in transfected Hi5 cells. The results imply that negative cross-resistance occurs because the wild type ABCC2 protein plays a key role in conferring susceptibility to Cry1Ac and in decreasing susceptibility to abamectin. The negative cross-resistance between a Bt toxin and other bacterial insecticides reported here may facilitate more sustainable pest control.
References
[1]
Sanahuja G, Banakar R, Twyman RM, Capell T, Christou P (2011) Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol J 9: 283–300. doi: 10.1111/j.1467-7652.2011.00595.x. pmid:21375687
[2]
James C (2014) Global status of commercialized biotech/GM Crops: 2014. International Service for the Acquisition of Agri-biotech Applications Brief No 49 (ISAAA, Ithaca, NY)
[3]
Mendelsohn M, Kough J, Vaituzis Z, Matthews K (2003) Are Bt crops safe? Nat Biotechnol 21: 1003–1009. pmid:12949561 doi: 10.1038/nbt0903-1003
[4]
Comas C, Lumbierres B, Pons X, Albajes R (2014) No effects of Bacillus thuringiensis maize on nontarget organisms in the field in southern Europe: a meta-analysis of 26 arthropod taxa. Transgenic Res 23: 135–143. doi: 10.1007/s11248-013-9737-0. pmid:23904218
[5]
Nicolia A, Manzo A, Veronesi F, Rosellini D (2014) An overview of the last 10 years of genetically engineered crop safety research. Crit Rev Biotechnol 34: 77–88. doi: 10.3109/07388551.2013.823595. pmid:24041244
[6]
Swiatkiewicz S, Swiatkiewicz M, Arczewska-Wlosek A, Jozefiak D (2014) Genetically modified feeds and their effect on the metabolic parameters of food-producing animals: A review of recent studies. Anim Feed Sci Tech 198: 1–19. doi: 10.1016/j.anifeedsci.2014.09.009
[7]
Agriculture USDo (2014) Adoption of genetically engineered crops in the U.S. Available at . Accessed April 2, 2015.
[8]
Wu KM, Lu YH, Feng HQ, Jiang YY, Zhao JZ (2008) Suppression of cotton bollworm in multiple crops in china in areas with Bt toxin-containing cotton. Science 321: 1676–1678. doi: 10.1126/science.1160550. pmid:18801998
[9]
Downes S, Mahon RJ, Rossiter L, Kauter G, Leven T, et al. (2010) Adaptive management of pest resistance by Helicoverpa species (Noctuidae) in Australia to the Cry2Ab Bt toxin in Bollgard II(R) cotton. Evol Appl 3: 574–584. doi: 10.1111/j.1752-4571.2010.00146.x. pmid:25567948
[10]
Hutchison WD, Burkness EC, Mitchell PD, Moon RD, Leslie TW, et al. (2010) Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science 330: 222–225. doi: 10.1126/science.1190242. pmid:20929774
[11]
Klumper W, Qaim M (2014) A meta-analysis of the impacts of genetically modified crops. PLoS One 9: e111629. doi: 10.1371/journal.pone.0111629. pmid:25365303
[12]
Lu Y, Wu K, Jiang Y, Guo Y, Desneux N (2012) Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487: 362–365. doi: 10.1038/nature11153. pmid:22722864
[13]
Gould F (1998) Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu Rev Entomol 43: 701–726. pmid:15012402 doi: 10.1146/annurev.ento.43.1.701
[14]
Van den Berg J, Hilbeck A, Bohn T (2013) Pest resistance to Cry1Ab Bt maize: Field resistance, contributing factors and lessons from South Africa. Crop Prot 54: 154–160. doi: 10.1016/j.cropro.2013.08.010
[15]
Tabashnik BE, Brevault T, Carriere Y (2013) Insect resistance to Bt crops: lessons from the first billion acres. Nat Biotechnol 31: 510–521. doi: 10.1038/nbt.2597. pmid:23752438
[16]
Gassmann AJ, Petzold-Maxwell JL, Clifton EH, Dunbar MW, Hoffmann AM, et al. (2014) Field-evolved resistance by western corn rootworm to multiple Bacillus thuringiensis toxins in transgenic maize. Proc Natl Acad Sci USA 111: 5141–5146. doi: 10.1073/pnas.1317179111. pmid:24639498
[17]
Jin L, Zhang H, Lu Y, Yang Y, Wu K, et al. (2015) Large-scale test of the natural refuge strategy for delaying insect resistance to transgenic Bt crops. Nat Biotechnol 33: 169–174. doi: 10.1038/nbt.3100. pmid:25503384
[18]
Carriere Y, Crickmore N, Tabashnik BE (2015) Optimizing pyramided transgenic Bt crops for sustainable pest management. Nat Biotechnol 33: 161–168. doi: 10.1038/nbt.3099. pmid:25599179
[19]
Pittendrigh BR, Huesing JE, Walters KR, Brett J, P. O (2014) Negative Cross-Resistance: History, Present Status, and Emerging Opportunities. In: Onstad DW Insect resistance management: biology, economics and prediction Waltham, MA: Academic Press Elsevier pp. 373–401.
[20]
Pittendrigh BR, Gaffney PJ, Huesing JE, Onstad DW, Roush RT, et al. (2004) "Active" refuges can inhibit the evolution of resistance in insects towards transgenic insect-resistant plants. J Theor Biol 231: 461–474. pmid:15488524 doi: 10.1016/j.jtbi.2004.05.023
[21]
Gassmann AJ, Hannon ER, Sisterson MS, Stock SP, Carriere Y, et al. (2012) Effects of entomopathogenic nematodes on evolution of pink bollworm resistance to Bacillus thuringiensis toxin Cry1Ac. J Econ Entomol 105: 994–1005. pmid:22812141 doi: 10.1603/ec11376
[22]
Gassmann AJ, Carriere Y, Tabashnik BE (2009) Fitness costs of insect resistance to Bacillus thuringiensis. Annu Rev Entomol 54: 147–163. doi: 10.1146/annurev.ento.54.110807.090518. pmid:19067630
[23]
Wu Y (2014) Detection and mechanisms of resistance evolved in insects to Cry toxins from Bacillus thuringiensis. Adv Insect Physiol 47: 297–341. doi: 10.1016/b978-0-12-800197-4.00006-3
[24]
Liu C, Xiao Y, Li X, Oppert B, Tabashnik BE, et al. (2014) Cis-mediated down-regulation of a trypsin gene associated with Bt resistance in cotton bollworm. Sci Rep 4: 7219. doi: 10.1038/srep07219. pmid:25427690
[25]
Gahan LJ, Pauchet Y, Vogel H, Heckel DG (2010) An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin. Plos Genet 6. doi: 10.1371/journal.pgen.1001248
[26]
Baxter SW, Badenes-Perez FR, Morrison A, Vogel H, Crickmore N, et al. (2011) Parallel evolution of Bacillus thuringiensis toxin resistance in Lepidoptera. Genetics 189: 675–U814. doi: 10.1534/genetics.111.130971. pmid:21840855
[27]
Atsumi S, Miyamoto K, Yamamoto K, Narukawa J, Kawai S, et al. (2012) Single amino acid mutation in an ATP-binding cassette transporter gene causes resistance to Bt toxin Cry1Ab in the silkworm, Bombyx mori. Proc Natl Acad Sci USA 109: E1591–1598. doi: 10.1073/pnas.1120698109. pmid:22635270
[28]
Xiao YT, Zhang T, Liu CX, Heckel DG, Li XC, et al. (2014) Mis-splicing of the ABCC2 gene linked with Bt toxin resistance in Helicoverpa armigera. Sci Rep 4: 6184. doi: 10.1038/srep06184. pmid:25154974
[29]
Hayden J, Brambila (2015) Pest alert: Helicovera armigera (Lepidoptera: Noctuidae), the old world Bollworm .
[30]
Dermauw W, Van Leeuwen T (2014) The ABC gene family in arthropods: comparative genomics and role in insecticide transport and resistance. Insect Biochem Mol Biol 45: 89–110. doi: 10.1016/j.ibmb.2013.11.001. pmid:24291285
[31]
Heckel DG (2012) Learning the ABCs of Bt: ABC transporters and insect resistance to Bacillus thuringiensis provide clues to a crucial step in toxin mode of action. Pestic Biochem Phys 104: 103–110. doi: 10.1016/j.pestbp.2012.05.007
[32]
Merzendorfer H (2014) ABC Transporters and their role in protecting insects from pesticides and their Metabolites. Adv Insect Physiol 46: 1–72. doi: 10.1016/b978-0-12-417010-0.00001-x
[33]
Clark J, Scott J, Campos F, Bloomquist J (1994) Resistance to avermectins: extent,mechanisms, and management implications. Annu Rev Entomol 40: 1–30. doi: 10.1146/annurev.en.40.010195.000245
[34]
Geng C, Watson GB, Sparks TC (2013) Nicotinic Acetylcholine Receptorsas Spinosyn Targets for Insect Pest Management. In: Cohen E, editor Advances in insect physiology Vol 44 Target receptors in the control of insect pests: Part I Waltham, MA: Academic Press Elsevier pp. 103–209.
[35]
Sparks TC, Nauen R (2015) IRAC: Mode of action classification and insecticide resistance management. Pestic Biochem Physiol 121: 122–128. doi: 10.1016/j.pestbp.2014.11.014. pmid:26047120
[36]
Luo L, Sun YJ, Wu YJ (2013) Abamectin resistance in Drosophila is related to increased expression of P-glycoprotein via the dEGFR and dAkt pathways. Insect Biochem Mol Biol 43: 627–634. doi: 10.1016/j.ibmb.2013.04.006. pmid:23648830
[37]
Liu YB, Tabashnik BE (1997) Inheritance of resistance to the Bacillus thuringiensis toxin Cry1C in the diamondback moth. Appl Environ Microbiol 63: 2218–2223. pmid:16535623 doi: 10.1128/aem.67.7.3216-3219.2001
[38]
Chen Q, Lu F, Xu X, Lu H (2011) Relationships between abamectin resistance and the activities of detoxification enzymes in the cotton bollworm, Helicoverpa armigera. In: Advances in Biomedical Engineering, Hong Kong: ICABE. pp 136–139.
[39]
Bird LJ, Downes SJ (2014) Toxicity and cross-resistance of insecticides to Cry2Ab-resistant and Cry2Ab-susceptible Helicoverpa armigera and Helicoverpa punctigera (Lepidoptera: Noctuidae). J Econ Entomol 107: 1923–1930. doi: 10.1603/EC14230. pmid:26309283
[40]
Heckel DG (2014) Premonitions of a brave new world: How Helicoverpa armigera has met the challenges of insecticides, Bacillus thuringiensis and hostplant defences in the old world. Annual Meeting of the Entomological Society of America, Portland, Oregon.
[41]
Yang YH, Li YP, Wu YD (2013) Current status of insecticide resistance in Helicoverpa armigera after 15 years of Bt Cotton planting in China. J Econ Entomol 106: 375–381. pmid:23448054 doi: 10.1603/ec12286
[42]
Zhang H, Yin W, Zhao J, Jin L, Yang Y, et al. (2011) Early warning of cotton bollworm resistance associated with intensive planting of Bt cotton in China. PLoS One 6: e22874. doi: 10.1371/journal.pone.0022874. pmid:21857961
[43]
Alvi AH, Sayyed AH, Naeem M, Ali M (2012) Field evolved resistance in Helicoverpa armigera (Lepidoptera: Noctuidae) to Bacillus thuringiensis toxin Cry1Ac in Pakistan. PLoS One 7: e47309. doi: 10.1371/journal.pone.0047309. pmid:23077589
[44]
Zhang H, Tian W, Zhao J, Jin L, Yang J, et al. (2012) Diverse genetic basis of field-evolved resistance to Bt cotton in cotton bollworm from China. Proc Natl Acad Sci USA 109: 10275–10280. doi: 10.1073/pnas.1200156109. pmid:22689968
[45]
Chen W, Liu C, Xiao Y, Zhang D, Zhang Y, et al. (2015) A toxin-binding alkaline phosphatase fragment synergizes Bt toxin Cry1Ac against susceptible and resistant Helicoverpa armigera. PLoS One 10: e0126288. doi: 10.1371/journal.pone.0126288. pmid:25885820
[46]
Lumaret JP, Errouissi F, Floate K, Rombke J, Wardhaugh K (2012) A review on the toxicity and non-target effects of macrocyclic lactones in terrestrial and aquatic environments. Curr Pharm Biotechnol 13: 1004–1060. pmid:22039795 doi: 10.2174/138920112800399257
[47]
Downes SJ, Bird LJ (2015) Helicoverpa resistance monitoring end of season 2014/2015 report. .
[48]
Guo ZJ, Kang S, Chen DF, Wu QJ, Wang SL, et al. (2015) MAPK signaling pathway alters expression of midgut ALP and ABCC genes and causes resistance to Bacillus thuringiensis Cry1Ac toxin in diamondback moth. Plos Genet 11. doi: 10.1371/journal.pgen.1005124
[49]
Park Y, Gonzalez-Martinez RM, Navarro-Cerrillo G, Chakroun M, Kim Y, et al. (2014) ABCC transporters mediate insect resistance to multiple Bt toxins revealed by bulk segregant analysis. BMC Biol 12: 46. doi: 10.1186/1741-7007-12-46. pmid:24912445
[50]
Liang GM, Tan WJ, Guo YY (1999) An improvement in the technique of artificial rearing cotton bollworm. Plant Protect 25: 15–17.
[51]
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25: 402–408. pmid:11846609 doi: 10.1006/meth.2001.1262
[52]
Du PQ, Liu XG, Gu XJ, Dong FS, Xu J, et al. (2013) Rapid residue analysis of pyriproxyfen, avermectins and diflubenzuron in mushrooms by ultra-performance liquid chromatography coupled with tandem mass spectrometry. Anal Methods-Uk 5: 6741–6747. doi: 10.1039/c3ay41074a
[53]
Chen Z, He F, Xiao Y, Liu C, Li J, et al. (2015) Endogenous expression of a Bt toxin receptor in the Cry1Ac-susceptible insect cell line and its synergistic effect with cadherin on cytotoxicity of activated Cry1Ac. Insect Biochem Mol Biol 59C: 1–17. doi: 10.1016/j.ibmb.2015.01.014
[54]
Zhou ZS, Yang SJ, Shu CL, Song FP, Zhou XP, et al. (2015) Comparison and optimization of the method for Cry1Ac protoxin preparation in HD73 strain. J Integr Agr 14: 1598–1603. doi: 10.1016/s2095-3119(14)60950-3
[55]
Tanaka S, Miyamoto K, Noda H, Jurat-Fuentes JL, Yoshizawa Y, et al. (2013) The ATP-binding cassette transporter subfamily C member 2 in Bombyx mori larvae is a functional receptor for Cry toxins from Bacillus thuringiensis. FEBS J 280: 1782–1794. doi: 10.1111/febs.12200. pmid:23432933
[56]
Tabashnik BE, Cushing NL, Johnson MW (1987) Diamondback moth (Lepidoptera: Plutellidae) resistance to insecticides in Hawaii: intra-island variation and cross-resistance. J Econ Entomol 80: 1091–1099. doi: 10.1093/jee/80.6.1091