全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Oncogenic Herpesvirus Utilizes Stress-Induced Cell Cycle Checkpoints for Efficient Lytic Replication

DOI: 10.1371/journal.ppat.1005424

Full-Text   Cite this paper   Add to My Lib

Abstract:

Kaposi’s sarcoma herpesvirus (KSHV) causes Kaposi’s sarcoma and certain lymphoproliferative malignancies. Latent infection is established in the majority of tumor cells, whereas lytic replication is reactivated in a small fraction of cells, which is important for both virus spread and disease progression. A siRNA screen for novel regulators of KSHV reactivation identified the E3 ubiquitin ligase MDM2 as a negative regulator of viral reactivation. Depletion of MDM2, a repressor of p53, favored efficient activation of the viral lytic transcription program and viral reactivation. During lytic replication cells activated a p53 response, accumulated DNA damage and arrested at G2-phase. Depletion of p21, a p53 target gene, restored cell cycle progression and thereby impaired the virus reactivation cascade delaying the onset of virus replication induced cytopathic effect. Herpesviruses are known to reactivate in response to different kinds of stress, and our study now highlights the molecular events in the stressed host cell that KSHV has evolved to utilize to ensure efficient viral lytic replication.

References

[1]  Cesarman E, Moore PS, Rao PH, Inghirami G, Knowles DM, et al. (1995) In vitro establishment and characterization of two acquired immunodeficiency syndrome-related lymphoma cell lines (BC-1 and BC-2) containing Kaposi's sarcoma-associated herpesvirus-like (KSHV) DNA sequences. Blood 86: 2708–2714. pmid:7670109
[2]  Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, et al. (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 266: 1865–1869. pmid:7997879 doi: 10.1126/science.7997879
[3]  Ye F, Lei X, Gao SJ (2011) Mechanisms of Kaposi's Sarcoma-Associated Herpesvirus Latency and Reactivation. Adv Virol 2011. doi: 10.1155/2011/193860
[4]  Dittmer DP (2003) Transcription profile of Kaposi's sarcoma-associated herpesvirus in primary Kaposi's sarcoma lesions as determined by real-time PCR arrays. Cancer Res 63: 2010–2015. pmid:12727810
[5]  Zhong W, Wang H, Herndier B, Ganem D (1996) Restricted expression of Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genes in Kaposi sarcoma. Proc Natl Acad Sci U S A 93: 6641–6646. pmid:8692871 doi: 10.1073/pnas.93.13.6641
[6]  Alagiozoglou L, Morris L, Bredell H, Martin DJ, Sitas F (2003) Human herpesvirus-8 antibodies and DNA in HIV-1 infected patients in South Africa. Epidemiol Infect 131: 1125–1129. pmid:14959780 doi: 10.1017/s0950268803001146
[7]  Laney AS, Cannon MJ, Jaffe HW, Offermann MK, Ou CY, et al. (2007) Human herpesvirus 8 presence and viral load are associated with the progression of AIDS-associated Kaposi's sarcoma. AIDS 21: 1541–1545. pmid:17630548 doi: 10.1097/qad.0b013e3282202b7d
[8]  Song J, Yoshida A, Yamamoto Y, Katano H, Hagihara K, et al. (2004) Viral load of human herpesvirus 8 (HHV-8) in the circulatory blood cells correlates with clinical progression in a patient with HHV-8-associated solid lymphoma with aids-associated Kaposi's sarcoma. Leuk Lymphoma 45: 2343–2347. pmid:15512828 doi: 10.1080/10428190412331283242
[9]  Dalton-Griffin L, Wilson SJ, Kellam P (2009) X-box binding protein 1 contributes to induction of the Kaposi's sarcoma-associated herpesvirus lytic cycle under hypoxic conditions. J Virol 83: 7202–7209. doi: 10.1128/JVI.00076-09. pmid:19403667
[10]  Davis DA, Rinderknecht AS, Zoeteweij JP, Aoki Y, Read-Connole EL, et al. (2001) Hypoxia induces lytic replication of Kaposi sarcoma-associated herpesvirus. Blood 97: 3244–3250. pmid:11342455 doi: 10.1182/blood.v97.10.3244
[11]  Zhang L, Zhu C, Guo Y, Wei F, Lu J, et al. (2014) Inhibition of KAP1 enhances hypoxia-induced Kaposi's sarcoma-associated herpesvirus reactivation through RBP-Jkappa. J Virol 88: 6873–6884. doi: 10.1128/JVI.00283-14. pmid:24696491
[12]  Ye F, Zhou F, Bedolla RG, Jones T, Lei X, et al. (2011) Reactive oxygen species hydrogen peroxide mediates Kaposi's sarcoma-associated herpesvirus reactivation from latency. PLoS Pathog 7: e1002054. doi: 10.1371/journal.ppat.1002054. pmid:21625536
[13]  Blackbourn DJ, Lennette E, Klencke B, Moses A, Chandran B, et al. (2000) The restricted cellular host range of human herpesvirus 8. AIDS 14: 1123–1133. pmid:10894276 doi: 10.1097/00002030-200006160-00009
[14]  Chang J, Renne R, Dittmer D, Ganem D (2000) Inflammatory cytokines and the reactivation of Kaposi's sarcoma-associated herpesvirus lytic replication. Virology 266: 17–25. pmid:10612656 doi: 10.1006/viro.1999.0077
[15]  Monini P, Colombini S, Sturzl M, Goletti D, Cafaro A, et al. (1999) Reactivation and persistence of human herpesvirus-8 infection in B cells and monocytes by Th-1 cytokines increased in Kaposi's sarcoma. Blood 93: 4044–4058. pmid:10361101
[16]  Cheng F, Weidner-Glunde M, Varjosalo M, Rainio EM, Lehtonen A, et al. (2009) KSHV reactivation from latency requires Pim-1 and Pim-3 kinases to inactivate the latency-associated nuclear antigen LANA. PLoS Pathog 5: e1000324. doi: 10.1371/journal.ppat.1000324. pmid:19266083
[17]  Dillon PJ, Gregory SM, Tamburro K, Sanders MK, Johnson GL, et al. (2013) Tousled-like kinases modulate reactivation of gammaherpesviruses from latency. Cell Host Microbe 13: 204–214. doi: 10.1016/j.chom.2012.12.005. pmid:23414760
[18]  Varjosalo M, Bjorklund M, Cheng F, Syvanen H, Kivioja T, et al. (2008) Application of active and kinase-deficient kinome collection for identification of kinases regulating hedgehog signaling. Cell 133: 537–548. doi: 10.1016/j.cell.2008.02.047. pmid:18455992
[19]  Xie J, Ajibade AO, Ye F, Kuhne K, Gao SJ (2008) Reactivation of Kaposi's sarcoma-associated herpesvirus from latency requires MEK/ERK, JNK and p38 multiple mitogen-activated protein kinase pathways. Virology 371: 139–154. pmid:17964626 doi: 10.1016/j.virol.2007.09.040
[20]  Yu F, Harada JN, Brown HJ, Deng H, Song MJ, et al. (2007) Systematic identification of cellular signals reactivating Kaposi sarcoma-associated herpesvirus. PLoS Pathog 3: e44. pmid:17397260 doi: 10.1371/journal.ppat.0030044
[21]  Li Q, He M, Zhou F, Ye F, Gao SJ (2014) Activation of Kaposi's sarcoma-associated herpesvirus (KSHV) by inhibitors of class III histone deacetylases: identification of sirtuin 1 as a regulator of the KSHV life cycle. J Virol 88: 6355–6367. doi: 10.1128/JVI.00219-14. pmid:24672028
[22]  Lieberman PM (2013) Keeping it quiet: chromatin control of gammaherpesvirus latency. Nat Rev Microbiol 11: 863–875. doi: 10.1038/nrmicro3135. pmid:24192651
[23]  Pantry SN, Medveczky PG (2009) Epigenetic regulation of Kaposi's sarcoma-associated herpesvirus replication. Semin Cancer Biol 19: 153–157. doi: 10.1016/j.semcancer.2009.02.010. pmid:19429478
[24]  Sarek G, Jarviluoma A, Moore HM, Tojkander S, Vartia S, et al. (2010) Nucleophosmin phosphorylation by v-cyclin-CDK6 controls KSHV latency. PLoS Pathog 6: e1000818. doi: 10.1371/journal.ppat.1000818. pmid:20333249
[25]  Shin HJ, Decotiis J, Giron M, Palmeri D, Lukac DM (2014) Histone Deacetylase Classes I and II Regulate Kaposi's Sarcoma-Associated Herpesvirus Reactivation. J Virol 88: 1281–1292. doi: 10.1128/JVI.02665-13. pmid:24227836
[26]  Miller G, El-Guindy A, Countryman J, Ye J, Gradoville L (2007) Lytic cycle switches of oncogenic human gammaherpesviruses(1). Adv Cancer Res 97: 81–109. pmid:17419942 doi: 10.1016/s0065-230x(06)97004-3
[27]  Gunther T, Grundhoff A (2010) The epigenetic landscape of latent Kaposi sarcoma-associated herpesvirus genomes. PLoS Pathog 6: e1000935. doi: 10.1371/journal.ppat.1000935. pmid:20532208
[28]  Toth Z, Maglinte DT, Lee SH, Lee HR, Wong LY, et al. (2010) Epigenetic analysis of KSHV latent and lytic genomes. PLoS Pathog 6: e1001013. doi: 10.1371/journal.ppat.1001013. pmid:20661424
[29]  Chen HS, Lu F, Lieberman PM (2013) Epigenetic regulation of EBV and KSHV latency. Curr Opin Virol 3: 251–259. doi: 10.1016/j.coviro.2013.03.004. pmid:23601957
[30]  Chen HS, Wikramasinghe P, Showe L, Lieberman PM (2012) Cohesins repress Kaposi's sarcoma-associated herpesvirus immediate early gene transcription during latency. J Virol 86: 9454–9464. doi: 10.1128/JVI.00787-12. pmid:22740398
[31]  Chang PC, Fitzgerald LD, Hsia DA, Izumiya Y, Wu CY, et al. (2011) Histone demethylase JMJD2A regulates Kaposi's sarcoma-associated herpesvirus replication and is targeted by a viral transcriptional factor. J Virol 85: 3283–3293. doi: 10.1128/JVI.02485-10. pmid:21228229
[32]  Bjorkman M, Ostling P, Harma V, Virtanen J, Mpindi JP, et al. (2012) Systematic knockdown of epigenetic enzymes identifies a novel histone demethylase PHF8 overexpressed in prostate cancer with an impact on cell proliferation, migration and invasion. Oncogene 31: 3444–3456. doi: 10.1038/onc.2011.512. pmid:22120715
[33]  Rantala JK, Makela R, Aaltola AR, Laasola P, Mpindi JP, et al. (2011) A cell spot microarray method for production of high density siRNA transfection microarrays. BMC Genomics 12: 162. doi: 10.1186/1471-2164-12-162. pmid:21443765
[34]  Vieira J, O'Hearn PM (2004) Use of the red fluorescent protein as a marker of Kaposi's sarcoma-associated herpesvirus lytic gene expression. Virology 325: 225–240. pmid:15246263 doi: 10.1016/j.virol.2004.03.049
[35]  Myoung J, Ganem D (2011) Generation of a doxycycline-inducible KSHV producer cell line of endothelial origin: maintenance of tight latency with efficient reactivation upon induction. J Virol Methods 174: 12–21. doi: 10.1016/j.jviromet.2011.03.012. pmid:21419799
[36]  Arvanitakis L, Mesri EA, Nador RG, Said JW, Asch AS, et al. (1996) Establishment and characterization of a primary effusion (body cavity-based) lymphoma cell line (BC-3) harboring kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) in the absence of Epstein-Barr virus. Blood 88: 2648–2654. pmid:8839859
[37]  Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387: 296–299. pmid:9153395 doi: 10.1038/387296a0
[38]  Friborg J Jr., Kong W, Hottiger MO, Nabel GJ (1999) p53 inhibition by the LANA protein of KSHV protects against cell death. Nature 402: 889–894. pmid:10622254 doi: 10.1038/47266
[39]  Katano H, Sato Y, Sata T (2001) Expression of p53 and human herpesvirus-8 (HHV-8)-encoded latency-associated nuclear antigen with inhibition of apoptosis in HHV-8-associated malignancies. Cancer 92: 3076–3084. pmid:11753987 doi: 10.1002/1097-0142(20011215)92:12<3076::aid-cncr10117>3.0.co;2-d
[40]  Nakamura H, Li M, Zarycki J, Jung JU (2001) Inhibition of p53 tumor suppressor by viral interferon regulatory factor. J Virol 75: 7572–7582. pmid:11462029 doi: 10.1128/jvi.75.16.7572-7582.2001
[41]  Rivas C, Thlick AE, Parravicini C, Moore PS, Chang Y (2001) Kaposi's sarcoma-associated herpesvirus LANA2 is a B-cell-specific latent viral protein that inhibits p53. J Virol 75: 429–438. pmid:11119611 doi: 10.1128/jvi.75.1.429-438.2001
[42]  Si H, Robertson ES (2006) Kaposi's sarcoma-associated herpesvirus-encoded latency-associated nuclear antigen induces chromosomal instability through inhibition of p53 function. J Virol 80: 697–709. pmid:16378973 doi: 10.1128/jvi.80.2.697-709.2006
[43]  Petre CE, Sin SH, Dittmer DP (2007) Functional p53 signaling in Kaposi's sarcoma-associated herpesvirus lymphomas: implications for therapy. J Virol 81: 1912–1922. pmid:17121789 doi: 10.1128/jvi.01757-06
[44]  Sarek G, Kurki S, Enback J, Iotzova G, Haas J, et al. (2007) Reactivation of the p53 pathway as a treatment modality for KSHV-induced lymphomas. J Clin Invest 117: 1019–1028. pmid:17364023 doi: 10.1172/jci30945
[45]  Paudel N, Sadagopan S, Chakraborty S, Sarek G, Ojala PM, et al. (2012) Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen interacts with multifunctional angiogenin to utilize its antiapoptotic functions. J Virol 86: 5974–5991. doi: 10.1128/JVI.00070-12. pmid:22438557
[46]  Asahi-Ozaki Y, Sato Y, Kanno T, Sata T, Katano H (2006) Quantitative analysis of Kaposi sarcoma-associated herpesvirus (KSHV) in KSHV-associated diseases. J Infect Dis 193: 773–782. pmid:16479510 doi: 10.1086/500560
[47]  Nikulenkov F, Spinnler C, Li H, Tonelli C, Shi Y, et al. (2012) Insights into p53 transcriptional function via genome-wide chromatin occupancy and gene expression analysis. Cell Death Differ 19: 1992–2002. doi: 10.1038/cdd.2012.89. pmid:22790872
[48]  Davy C, Doorbar J (2007) G2/M cell cycle arrest in the life cycle of viruses. Virology 368: 219–226. pmid:17675127 doi: 10.1016/j.virol.2007.05.043
[49]  Abbas T, Dutta A (2009) p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9: 400–414. doi: 10.1038/nrc2657. pmid:19440234
[50]  Han J, Kim S, Yang JH, Nam SJ, Lee JE (2012) TPA-induced p21 expression augments G2/M arrest through a p53-independent mechanism in human breast cancer cells. Oncol Rep 27: 517–522. doi: 10.3892/or.2011.1511. pmid:22020547
[51]  Archer SY, Meng S, Shei A, Hodin RA (1998) p21(WAF1) is required for butyrate-mediated growth inhibition of human colon cancer cells. Proc Natl Acad Sci U S A 95: 6791–6796. pmid:9618491 doi: 10.1073/pnas.95.12.6791
[52]  Li Y, Bhuiyan M, Mohammad RM, Sarkar FH (1998) Induction of apoptosis in breast cancer cells by TPA. Oncogene 17: 2915–2920. pmid:9879997 doi: 10.1038/sj.onc.1202218
[53]  Zeng YX, el-Deiry WS (1996) Regulation of p21WAF1/CIP1 expression by p53-independent pathways. Oncogene 12: 1557–1564. pmid:8622872
[54]  Nakamura H, Lu M, Gwack Y, Souvlis J, Zeichner SL, et al. (2003) Global changes in Kaposi's sarcoma-associated virus gene expression patterns following expression of a tetracycline-inducible Rta transactivator. J Virol 77: 4205–4220. pmid:12634378 doi: 10.1128/jvi.77.7.4205-4220.2003
[55]  Prigent C, Dimitrov S (2003) Phosphorylation of serine 10 in histone H3, what for? J Cell Sci 116: 3677–3685. pmid:12917355 doi: 10.1242/jcs.00735
[56]  Koopal S, Furuhjelm JH, Jarviluoma A, Jaamaa S, Pyakurel P, et al. (2007) Viral oncogene-induced DNA damage response is activated in Kaposi sarcoma tumorigenesis. PLoS Pathog 3: 1348–1360. pmid:17907806 doi: 10.1371/journal.ppat.0030140
[57]  Chen Z, Xiao Z, Gu WZ, Xue J, Bui MH, et al. (2006) Selective Chk1 inhibitors differentially sensitize p53-deficient cancer cells to cancer therapeutics. Int J Cancer 119: 2784–2794. pmid:17019715 doi: 10.1002/ijc.22198
[58]  Branzei D, Foiani M (2008) Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol 9: 297–308. doi: 10.1038/nrm2351. pmid:18285803
[59]  Petre CE, Sin SH, Dittmer DP (2006) Functional p53 signaling in Kaposi's sarcoma-associated herpesvirus (KSHV) lymphomas-implications for therapy. J Virol. doi: 10.1128/jvi.01757-06
[60]  Ye F, Lattif AA, Xie J, Weinberg A, Gao S (2012) Nutlin-3 induces apoptosis, disrupts viral latency and inhibits expression of angiopoietin-2 in Kaposi sarcoma tumor cells. Cell Cycle 11: 1393–1399. doi: 10.4161/cc.19756. pmid:22421142
[61]  Sarek G, Ma L, Enback J, Jarviluoma A, Moreau P, et al. (2013) Kaposi's sarcoma herpesvirus lytic replication compromises apoptotic response to p53 reactivation in virus-induced lymphomas. Oncogene 32: 1091–1098. doi: 10.1038/onc.2012.118. pmid:22469985
[62]  Burkhart BA, Kennett SB, Archer TK (2007) Osmotic stress-dependent repression is mediated by histone H3 phosphorylation and chromatin structure. J Biol Chem 282: 4400–4407. pmid:17158874 doi: 10.1074/jbc.m609041200
[63]  Goto H, Tomono Y, Ajiro K, Kosako H, Fujita M, et al. (1999) Identification of a novel phosphorylation site on histone H3 coupled with mitotic chromosome condensation. J Biol Chem 274: 25543–25549. pmid:10464286 doi: 10.1074/jbc.274.36.25543
[64]  Hendzel MJ, Wei Y, Mancini MA, Van Hooser A, Ranalli T, et al. (1997) Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106: 348–360. pmid:9362543 doi: 10.1007/s004120050256
[65]  Hans F, Dimitrov S (2001) Histone H3 phosphorylation and cell division. Oncogene 20: 3021–3027. pmid:11420717 doi: 10.1038/sj.onc.1204326
[66]  Rodriguez R, Meuth M (2006) Chk1 and p21 cooperate to prevent apoptosis during DNA replication fork stress. Mol Biol Cell 17: 402–412. pmid:16280359 doi: 10.1091/mbc.e05-07-0594
[67]  Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, et al. (1998) Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282: 1497–1501. pmid:9822382 doi: 10.1126/science.282.5393.1497
[68]  Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D, et al. (2000) Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 14: 1448–1459. pmid:10859164
[69]  Krenning L, Feringa FM, Shaltiel IA, van den Berg J, Medema RH (2014) Transient activation of p53 in G2 phase is sufficient to induce senescence. Mol Cell 55: 59–72. doi: 10.1016/j.molcel.2014.05.007. pmid:24910099
[70]  Li X, Chen S, Sun R (2012) Cdk1 inhibition induces mutually inhibitory apoptosis and reactivation of Kaposi's sarcoma-associated herpesvirus. J Virol 86: 6668–6676. doi: 10.1128/JVI.06240-11. pmid:22496227
[71]  Castedo M, Perfettini JL, Roumier T, Valent A, Raslova H, et al. (2004) Mitotic catastrophe constitutes a special case of apoptosis whose suppression entails aneuploidy. Oncogene 23: 4362–4370. pmid:15048075 doi: 10.1038/sj.onc.1207572
[72]  Castedo M, Perfettini JL, Roumier T, Andreau K, Medema R, et al. (2004) Cell death by mitotic catastrophe: a molecular definition. Oncogene 23: 2825–2837. pmid:15077146 doi: 10.1038/sj.onc.1207528
[73]  Ma CX, Janetka JW, Piwnica-Worms H (2011) Death by releasing the breaks: CHK1 inhibitors as cancer therapeutics. Trends Mol Med 17: 88–96. doi: 10.1016/j.molmed.2010.10.009. pmid:21087899
[74]  Koniaras K, Cuddihy AR, Christopoulos H, Hogg A, O'Connell MJ (2001) Inhibition of Chk1-dependent G2 DNA damage checkpoint radiosensitizes p53 mutant human cells. Oncogene 20: 7453–7463. pmid:11709716 doi: 10.1038/sj.onc.1204942
[75]  Lossaint G, Besnard E, Fisher D, Piette J, Dulic V (2011) Chk1 is dispensable for G2 arrest in response to sustained DNA damage when the ATM/p53/p21 pathway is functional. Oncogene 30: 4261–4274. doi: 10.1038/onc.2011.135. pmid:21532626
[76]  Nador RG, Cesarman E, Chadburn A, Dawson DB, Ansari MQ, et al. (1996) Primary effusion lymphoma: a distinct clinicopathologic entity associated with the Kaposi's sarcoma-associated herpes virus. Blood 88: 645–656. pmid:8695812
[77]  Forrest JC, Paden CR, Allen RD 3rd, Collins J, Speck SH (2007) ORF73-null murine gammaherpesvirus 68 reveals roles for mLANA and p53 in virus replication. J Virol 81: 11957–11971. pmid:17699571 doi: 10.1128/jvi.00111-07
[78]  Chang SS, Lo YC, Chua HH, Chiu HY, Tsai SC, et al. (2008) Critical role of p53 in histone deacetylase inhibitor-induced Epstein-Barr virus Zta expression. J Virol 82: 7745–7751. doi: 10.1128/JVI.02717-07. pmid:18495777
[79]  Hagemeier SR, Barlow EA, Meng Q, Kenney SC (2012) The cellular ataxia telangiectasia-mutated kinase promotes epstein-barr virus lytic reactivation in response to multiple different types of lytic reactivation-inducing stimuli. J Virol 86: 13360–13370. doi: 10.1128/JVI.01850-12. pmid:23015717
[80]  Tuupanen S, Turunen M, Lehtonen R, Hallikas O, Vanharanta S, et al. (2009) The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling. Nat Genet 41: 885–890. doi: 10.1038/ng.406. pmid:19561604
[81]  Wei GH, Badis G, Berger MF, Kivioja T, Palin K, et al. (2010) Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo. EMBO J 29: 2147–2160. doi: 10.1038/emboj.2010.106. pmid:20517297
[82]  Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, et al. (2006) CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7: R100. pmid:17076895

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133