全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Dengue Virus Nonstructural Protein 5 (NS5) Assembles into a Dimer with a Unique Methyltransferase and Polymerase Interface

DOI: 10.1371/journal.ppat.1005451

Full-Text   Cite this paper   Add to My Lib

Abstract:

Flavivirus nonstructural protein 5 (NS5) consists of methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) domains, which catalyze 5’-RNA capping/methylation and RNA synthesis, respectively, during viral genome replication. Although the crystal structure of flavivirus NS5 is known, no data about the quaternary organization of the functional enzyme are available. We report the crystal structure of dengue virus full-length NS5, where eight molecules of NS5 are arranged as four independent dimers in the crystallographic asymmetric unit. The relative orientation of each monomer within the dimer, as well as the orientations of the MTase and RdRp domains within each monomer, is conserved, suggesting that these structural arrangements represent the biologically relevant conformation and assembly of this multi-functional enzyme. Essential interactions between MTase and RdRp domains are maintained in the NS5 dimer via inter-molecular interactions, providing evidence that flavivirus NS5 can adopt multiple conformations while preserving necessary interactions between the MTase and RdRp domains. Furthermore, many NS5 residues that reduce viral replication are located at either the inter-domain interface within a monomer or at the inter-molecular interface within the dimer. Hence the X-ray structure of NS5 presented here suggests that MTase and RdRp activities could be coordinated as a dimer during viral genome replication.

References

[1]  Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, et al. (2013) The global distribution and burden of dengue. Nature 496: 504–507. doi: 10.1038/nature12060. pmid:23563266
[2]  Wilson ME, Chen LH (2015) Dengue: update on epidemiology. Curr Infect Dis Rep 17: 457. doi: 10.1007/s11908-014-0457-2. pmid:25475383
[3]  Mackenzie JS, Gubler DJ, Petersen LR (2004) Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med 10: S98–109. pmid:15577938 doi: 10.1038/nm1144
[4]  Bollati M, Alvarez K, Assenberg R, Baronti C, Canard B, et al. (2010) Structure and functionality in flavivirus NS-proteins: perspectives for drug design. Antiviral Res 87: 125–148. doi: 10.1016/j.antiviral.2009.11.009. pmid:19945487
[5]  Mackenzie JM, Westaway EG (2001) Assembly and maturation of the flavivirus Kunjin virus appear to occur in the rough endoplasmic reticulum and along the secretory pathway, respectively. J Virol 75: 10787–10799. pmid:11602720 doi: 10.1128/jvi.75.22.10787-10799.2001
[6]  Uchil PD, Satchidanandam V (2003) Architecture of the flaviviral replication complex. Protease, nuclease, and detergents reveal encasement within double-layered membrane compartments. J Biol Chem 278: 24388–24398. pmid:12700232 doi: 10.1074/jbc.m301717200
[7]  Welsch S, Miller S, Romero-Brey I, Merz A, Bleck CK, et al. (2009) Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host Microbe 5: 365–375. doi: 10.1016/j.chom.2009.03.007. pmid:19380115
[8]  Gillespie LK, Hoenen A, Morgan G, Mackenzie JM (2010) The endoplasmic reticulum provides the membrane platform for biogenesis of the flavivirus replication complex. J Virol 84: 10438–10447. doi: 10.1128/JVI.00986-10. pmid:20686019
[9]  Egloff MP, Decroly E, Malet H, Selisko B, Benarroch D, et al. (2007) Structural and functional analysis of methylation and 5'-RNA sequence requirements of short capped RNAs by the methyltransferase domain of dengue virus NS5. J Mol Biol 372: 723–736. pmid:17686489 doi: 10.1016/j.jmb.2007.07.005
[10]  Issur M, Geiss BJ, Bougie I, Picard-Jean F, Despins S, et al. (2009) The flavivirus NS5 protein is a true RNA guanylyltransferase that catalyzes a two-step reaction to form the RNA cap structure. RNA 15: 2340–2350. doi: 10.1261/rna.1609709. pmid:19850911
[11]  Bollati M, Milani M, Mastrangelo E, Ricagno S, Tedeschi G, et al. (2009) Recognition of RNA cap in the Wesselsbron virus NS5 methyltransferase domain: implications for RNA-capping mechanisms in Flavivirus. J Mol Biol 385: 140–152. doi: 10.1016/j.jmb.2008.10.028. pmid:18976670
[12]  Ackermann M, Padmanabhan R (2001) De novo synthesis of RNA by the dengue virus RNA-dependent RNA polymerase exhibits temperature dependence at the initiation but not elongation phase. J Biol Chem 276: 39926–39937. pmid:11546770 doi: 10.1074/jbc.m104248200
[13]  Egloff MP, Benarroch D, Selisko B, Romette JL, Canard B (2002) An RNA cap (nucleoside-2'-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. EMBO J 21: 2757–2768. pmid:12032088 doi: 10.1093/emboj/21.11.2757
[14]  Ray D, Shah A, Tilgner M, Guo Y, Zhao Y, et al. (2006) West Nile virus 5'-cap structure is formed by sequential guanine N-7 and ribose 2'-O methylations by nonstructural protein 5. J Virol 80: 8362–8370. pmid:16912287 doi: 10.1128/jvi.00814-06
[15]  Paranjape SM, Harris E (2010) Control of dengue virus translation and replication. Curr Top Microbiol Immunol 338: 15–34. doi: 10.1007/978-3-642-02215-9_2. pmid:19802575
[16]  Liu L, Dong H, Chen H, Zhang J, Ling H, et al. (2010) Flavivirus RNA cap methyltransferase: structure, function, and inhibition. Front Biol (Beijing) 5: 286–303. doi: 10.1007/s11515-010-0660-y
[17]  Dong H, Zhang B, Shi PY (2008) Flavivirus methyltransferase: a novel antiviral target. Antiviral Res 80: 1–10. doi: 10.1016/j.antiviral.2008.05.003. pmid:18571739
[18]  Klema VJ, Padmanabhan R, Choi KH (2015) Flaviviral Replication Complex: Coordination between RNA Synthesis and 5'-RNA Capping. Viruses 7: 4640–4656. doi: 10.3390/v7082837. pmid:26287232
[19]  Tan CS, Hobson-Peters JM, Stoermer MJ, Fairlie DP, Khromykh AA, et al. (2013) An interaction between the methyltransferase and RNA dependent RNA polymerase domains of the West Nile virus NS5 protein. J Gen Virol 94: 1961–1971. doi: 10.1099/vir.0.054395-0. pmid:23740481
[20]  Malet H, Egloff MP, Selisko B, Butcher RE, Wright PJ, et al. (2007) Crystal structure of the RNA polymerase domain of the West Nile virus non-structural protein 5. J Biol Chem 282: 10678–10689. pmid:17287213 doi: 10.1074/jbc.m607273200
[21]  Zhang B, Dong H, Zhou Y, Shi PY (2008) Genetic interactions among the West Nile virus methyltransferase, the RNA-dependent RNA polymerase, and the 5' stem-loop of genomic RNA. J Virol 82: 7047–7058. doi: 10.1128/JVI.00654-08. pmid:18448528
[22]  Li XD, Shan C, Deng CL, Ye HQ, Shi PY, et al. (2014) The interface between methyltransferase and polymerase of NS5 is essential for flavivirus replication. PLoS Negl Trop Dis 8: e2891. doi: 10.1371/journal.pntd.0002891. pmid:24852307
[23]  Wu J, Lu G, Zhang B, Gong P (2015) Perturbation in the conserved methyltransferase-polymerase interface of flavivirus NS5 differentially affects polymerase initiation and elongation. J Virol 89: 249–261. doi: 10.1128/JVI.02085-14. pmid:25320292
[24]  Wang Q, Weng L, Tian X, Counor D, Sun J, et al. (2012) Effect of the methyltransferase domain of Japanese encephalitis virus NS5 on the polymerase activity. Biochim Biophys Acta 1819: 411–418. doi: 10.1016/j.bbagrm.2012.01.003. pmid:22285573
[25]  Lu G, Gong P (2013) Crystal Structure of the full-length Japanese encephalitis virus NS5 reveals a conserved methyltransferase-polymerase interface. PLoS Pathog 9: e1003549. doi: 10.1371/journal.ppat.1003549. pmid:23950717
[26]  Choi KH, Rossmann MG (2009) RNA-dependent RNA polymerases from Flaviviridae. Curr Opin Struct Biol 19: 746–751. doi: 10.1016/j.sbi.2009.10.015. pmid:19914821
[27]  Nomaguchi M, Ackermann M, Yon C, You S, Padmanabhan R (2003) De novo synthesis of negative-strand RNA by Dengue virus RNA-dependent RNA polymerase in vitro: nucleotide, primer, and template parameters. J Virol 77: 8831–8842. pmid:12885902 doi: 10.1128/jvi.77.16.8831-8842.2003
[28]  Noble CG, Lim SP, Chen YL, Liew CW, Yap L, et al. (2013) Conformational flexibility of the Dengue virus RNA-dependent RNA polymerase revealed by a complex with an inhibitor. J Virol 87: 5291–5295. doi: 10.1128/JVI.00045-13. pmid:23408636
[29]  Yap TL, Xu T, Chen YL, Malet H, Egloff MP, et al. (2007) Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution. J Virol 81: 4753–4765. pmid:17301146 doi: 10.1128/jvi.02283-06
[30]  Lim SP, Koh JH, Seh CC, Liew CW, Davidson AD, et al. (2013) A crystal structure of the dengue virus non-structural protein 5 (NS5) polymerase delineates interdomain amino acid residues that enhance its thermostability and de novo initiation activities. J Biol Chem 288: 31105–31114. doi: 10.1074/jbc.M113.508606. pmid:24025331
[31]  Zhao Y, Soh TS, Zheng J, Chan KW, Phoo WW, et al. (2015) A Crystal Structure of the Dengue Virus NS5 Protein Reveals a Novel Inter-domain Interface Essential for Protein Flexibility and Virus Replication. PLoS Pathog 11: e1004682. doi: 10.1371/journal.ppat.1004682. pmid:25775415
[32]  Hayward S, Berendsen HJ (1998) Systematic analysis of domain motions in proteins from conformational change: new results on citrate synthase and T4 lysozyme. Proteins 30: 144–154. pmid:9489922 doi: 10.1002/(sici)1097-0134(19980201)30:2<144::aid-prot4>3.3.co;2-i
[33]  Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372: 774–797. pmid:17681537 doi: 10.1016/j.jmb.2007.05.022
[34]  Hanley KA, Lee JJ, Blaney JE Jr., Murphy BR, Whitehead SS (2002) Paired charge-to-alanine mutagenesis of dengue virus type 4 NS5 generates mutants with temperature-sensitive, host range, and mouse attenuation phenotypes. J Virol 76: 525–531. pmid:11752143 doi: 10.1128/jvi.76.2.525-531.2002
[35]  Bussetta C, Choi KH (2012) Dengue virus nonstructural protein 5 adopts multiple conformations in solution. Biochemistry 51: 5921–5931. pmid:22757685 doi: 10.1021/bi300406n
[36]  Svergun D, Barberato C, Koch MHJ (1995) CRYSOL—A program to evaluate x-ray solution scattering of biological macromolecules from atomic coordinates. Journal of Applied Crystallography 28: 768–773. doi: 10.1107/s0021889895007047
[37]  Szymanski MR, Jezewska MJ, Bujalowski PJ, Bussetta C, Ye M, et al. (2011) Full-length Dengue virus RNA-dependent RNA polymerase-RNA/DNA complexes: stoichiometries, intrinsic affinities, cooperativities, base, and conformational specificities. Journal of Biological Chemistry 286: 33095–33108. doi: 10.1074/jbc.M111.255034. pmid:21725087
[38]  Yu L, Takeda K, Markoff L (2013) Protein-protein interactions among West Nile non-structural proteins and transmembrane complex formation in mammalian cells. Virology 446: 365–377. doi: 10.1016/j.virol.2013.08.006. pmid:24074601
[39]  Teramoto T, Boonyasuppayakorn S, Handley M, Choi KH, Padmanabhan R (2014) Substitution of NS5 N-terminal domain of dengue virus type 2 RNA with type 4 domain caused impaired replication and emergence of adaptive mutants with enhanced fitness. J Biol Chem 289: 22385–22400. doi: 10.1074/jbc.M114.584466. pmid:24904061
[40]  Dong H, Chang DC, Xie X, Toh YX, Chung KY, et al. (2010) Biochemical and genetic characterization of dengue virus methyltransferase. Virology 405: 568–578. doi: 10.1016/j.virol.2010.06.039. pmid:20655081
[41]  Kapoor M, Zhang L, Ramachandra M, Kusukawa J, Ebner KE, et al. (1995) Association between NS3 and NS5 proteins of dengue virus type 2 in the putative RNA replicase is linked to differential phosphorylation of NS5. J Biol Chem 270: 19100–19106. pmid:7642575 doi: 10.1074/jbc.270.32.19100
[42]  Johansson M, Brooks AJ, Jans DA, Vasudevan SG (2001) A small region of the dengue virus-encoded RNA-dependent RNA polymerase, NS5, confers interaction with both the nuclear transport receptor importin-beta and the viral helicase, NS3. J Gen Virol 82: 735–745. pmid:11257177 doi: 10.1099/0022-1317-82-4-735
[43]  Hannemann H, Sung PY, Chiu HC, Yousuf A, Bird J, et al. (2013) Serotype-specific differences in dengue virus non-structural protein 5 nuclear localization. J Biol Chem 288: 22621–22635. doi: 10.1074/jbc.M113.481382. pmid:23770669
[44]  Spagnolo JF, Rossignol E, Bullitt E, Kirkegaard K (2010) Enzymatic and nonenzymatic functions of viral RNA-dependent RNA polymerases within oligomeric arrays. RNA 16: 382–393. doi: 10.1261/rna.1955410. pmid:20051491
[45]  Yap LJ, Luo D, Chung KY, Lim SP, Bodenreider C, et al. (2010) Crystal structure of the dengue virus methyltransferase bound to a 5'-capped octameric RNA. PLoS One 5. doi: 10.1371/journal.pone.0012836
[46]  Selisko B, Wang C, Harris E, Canard B (2014) Regulation of Flavivirus RNA synthesis and replication. Curr Opin Virol 9: 74–83. doi: 10.1016/j.coviro.2014.09.011. pmid:25462437
[47]  Otwinowski Z, Minor W (1997) Processing of X-ray Diffraction Data Collected in Oscillation Mode. In: Carter J C.W., Sweet RM, editors. Methods in Enzymology. New Yorl: Academic Press. pp. 307–326.
[48]  Diederichs K, Karplus PA (2013) Better models by discarding data? Acta Crystallogr D Biol Crystallogr 69: 1215–1222. doi: 10.1107/S0907444913001121. pmid:23793147
[49]  Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, et al. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66: 213–221. doi: 10.1107/S0907444909052925. pmid:20124702
[50]  Lim SP, Sonntag LS, Noble C, Nilar SH, Ng RH, et al. (2011) Small molecule inhibitors that selectively block dengue virus methyltransferase. J Biol Chem 286: 6233–6240. doi: 10.1074/jbc.M110.179184. pmid:21147775
[51]  Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66: 486–501. doi: 10.1107/S0907444910007493. pmid:20383002
[52]  Painter J, Merritt EA (2006) TLSMD web server for the generation of multi-group TLS models. Journal of Applied Crystallography 39: 109–111. doi: 10.1107/s0021889805038987
[53]  Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, et al. (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67: 235–242. doi: 10.1107/S0907444910045749. pmid:21460441
[54]  Schr?dinger L The PyMOL Molecular Graphics System, Version 1.7.4.
[55]  Polo S, Ketner G, Levis R, Falgout B (1997) Infectious RNA transcripts from full-length dengue virus type 2 cDNA clones made in yeast. J Virol 71: 5366–5374. pmid:9188607
[56]  Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948. pmid:17846036 doi: 10.1093/bioinformatics/btm404
[57]  Brister JR, Bao Y, Zhdanov SA, Ostapchuck Y, Chetvernin V, et al. (2014) Virus Variation Resource—recent updates and future directions. Nucleic Acids Res 42: D660–665. doi: 10.1093/nar/gkt1268. pmid:24304891

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133