Stimulator of interferon genes (STING, also known as MITA, ERIS or MPYS) induces the activation of TBK1 kinase and IRF3 transcription factor, upon sensing of microbial DNAs. How IRF3 is recruited onto the STING signalosome remains unknown. We report here that silencing of the ER adaptor SCAP markedly impairs the IRF3-responsive gene expression induced by STING. Scap knockdown mice are more susceptible to HSV-1 infection. Interestingly, SCAP translocates from ER, via Golgi, to perinuclear microsome in a STING-dependent manner. Mechanistically, the N-terminal transmembrane domain of SCAP interacts with STING, and the C-terminal cytosolic domain of SCAP binds to IRF3, thus recruiting IRF3 onto STING signalosome. Mis-localization of SCAP abolishes its antiviral function. Collectively, this study characterizes SCAP as an essential adaptor in the STING signaling pathway, uncovering a critical missing link in DNAs-triggered host antiviral responses.
References
[1]
Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124: 783–801. pmid:16497588 doi: 10.1016/j.cell.2006.02.015
[2]
Takeuchi O, Akira S (2010) Pattern Recognition Receptors and Inflammation. Cell 140: 805–820. doi: 10.1016/j.cell.2010.01.022. pmid:20303872
[3]
Barbalat R, Ewald SE, Mouchess ML, Barton GM (2011) Nucleic acid recognition by the innate immune system. Annu Rev Immunol 29: 185–214. doi: 10.1146/annurev-immunol-031210-101340. pmid:21219183
[4]
Palm NW, Medzhitov R (2009) Pattern recognition receptors and control of adaptive immunity. Immunological Reviews 227: 221–233. doi: 10.1111/j.1600-065X.2008.00731.x. pmid:19120487
[5]
Schenten D, Medzhitov R (2011) The control of adaptive immune responses by the innate immune system. Adv Immunol 109: 87–124. pmid:21569913 doi: 10.1016/b978-0-12-387664-5.00003-0
[6]
Paludan SR, Bowie AG (2013) Immune Sensing of DNA. Immunity 38: 870–880. doi: 10.1016/j.immuni.2013.05.004. pmid:23706668
[7]
Wu JX, Chen ZJ (2014) Innate Immune Sensing and Signaling of Cytosolic Nucleic Acids. Annual Review of Immunology, Vol 32 32: 461–488. doi: 10.1146/annurev-immunol-032713-120156
[8]
Yoneyama M, Fujita T (2009) RNA recognition and signal transduction by RIG-I-like receptors. Immunological Reviews 227: 54–65. doi: 10.1111/j.1600-065X.2008.00727.x. pmid:19120475
[9]
Loo YM, Gale M Jr. (2011) Immune signaling by RIG-I-like receptors. Immunity 34: 680–692. doi: 10.1016/j.immuni.2011.05.003. pmid:21616437
[10]
Yoneyama M, Onomoto K, Jogi M, Akaboshi T, Fujita T (2015) Viral RNA detection by RIG-I-like receptors. Curr Opin Immunol 32C: 48–53. doi: 10.1016/j.coi.2014.12.012
[11]
Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, et al. (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408: 740–745. pmid:11130078 doi: 10.1038/35047123
[12]
Ablasser A, Bauernfeind F, Hartmann G, Latz E, Fitzgerald KA, Hornung V (2009) RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat Immunol 10: 1065–1072. doi: 10.1038/ni.1779. pmid:19609254
[13]
Chiu YH, Macmillan JB, Chen ZJ (2009) RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138: 576–591. doi: 10.1016/j.cell.2009.06.015. pmid:19631370
[14]
Unterholzner L, Keating SE, Baran M, Horan KA, Jensen SB, Sharma S, et al. (2010) IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol 11: 997–1004. doi: 10.1038/ni.1932. pmid:20890285
[15]
Zhang Z, Yuan B, Bao M, Lu N, Kim T, Liu YJ (2011) The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat Immunol 12: 959–965. doi: 10.1038/ni.2091. pmid:21892174
[16]
Ferguson BJ, Mansur DS, Peters NE, Ren H, Smith GL (2012) DNA-PK is a DNA sensor for IRF-3-dependent innate immunity. Elife 1: e00047. doi: 10.7554/eLife.00047. pmid:23251783
[17]
Kondo T, Kobayashi J, Saitoh T, Maruyama K, Ishii KJ, Barber GN, et al. (2013) DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I interferon by regulating STING trafficking. Proc Natl Acad Sci U S A 110: 2969–2974. doi: 10.1073/pnas.1222694110. pmid:23388631
[18]
Sun L, Wu J, Du F, Chen X, Chen ZJ (2013) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339: 786–791. doi: 10.1126/science.1232458. pmid:23258413
[19]
Ishikawa H, Barber GN (2008) STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455: 674–678. doi: 10.1038/nature07317. pmid:18724357
[20]
Jin L, Waterman PM, Jonscher KR, Short CM, Reisdorph NA, Cambier JC (2008) MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class II and mediates transduction of apoptotic signals. Mol Cell Biol 28: 5014–5026. doi: 10.1128/MCB.00640-08. pmid:18559423
[21]
Sun W, Li Y, Chen L, Chen H, You F, Zhou X, et al. (2009) ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc Natl Acad Sci U S A 106: 8653–8658. doi: 10.1073/pnas.0900850106. pmid:19433799
[22]
Zhong B, Yang Y, Li S, Wang YY, Li Y, Diao F, et al. (2008) The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29: 538–550. doi: 10.1016/j.immuni.2008.09.003. pmid:18818105
[23]
Ishikawa H, Ma Z, Barber GN (2009) STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461: 788–792. doi: 10.1038/nature08476. pmid:19776740
[24]
Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B, Hyodo M, et al. (2011) STING is a direct innate immune sensor of cyclic di-GMP. Nature 478: 515–U111. doi: 10.1038/nature10429. pmid:21947006
[25]
Wu J, Sun L, Chen X, Du F, Shi H, Chen C, et al. (2013) Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339: 826–830. doi: 10.1126/science.1229963. pmid:23258412
[26]
Saitoh T, Fujita N, Hayashi T, Takahara K, Satoh T, Lee H, et al. (2009) Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc Natl Acad Sci U S A 106: 20842–20846. doi: 10.1073/pnas.0911267106. pmid:19926846
[27]
Wang Q, Liu X, Cui Y, Tang Y, Chen W, Li S, et al. (2014) The E3 Ubiquitin Ligase AMFR and INSIG1 Bridge the Activation of TBK1 Kinase by Modifying the Adaptor STING. Immunity 41: 919–933. doi: 10.1016/j.immuni.2014.11.011. pmid:25526307
[28]
Meusser B, Hirsch C, Jarosch E, Sommer T (2005) ERAD: the long road to destruction. Nature Cell Biology 7: 766–772. pmid:16056268 doi: 10.1038/ncb0805-766
[29]
Sakai J, Nohturfft A, Cheng D, Ho YK, Brown MS, Goldstein JL (1997) Identification of complexes between the COOH-terminal domains of sterol regulatory element-binding proteins (SREBPs) and SREBP cleavage-activating protein. J Biol Chem 272: 20213–20221. pmid:9242699 doi: 10.1074/jbc.272.32.20213
[30]
Yang T, Espenshade PJ, Wright ME, Yabe D, Gong Y, Aebersold R, et al. (2002) Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell 110: 489–500. pmid:12202038 doi: 10.3410/f.1003998.146257
[31]
Burdette DL, Vance RE (2013) STING and the innate immune response to nucleic acids in the cytosol. Nature Immunology 14: 19–26. doi: 10.1038/ni.2491. pmid:23238760
[32]
Ran Y, Shu HB, Wang YY (2014) MITA/STING: A central and multifaceted mediator in innate immune response. Cytokine & Growth Factor Reviews 25: 631–639. doi: 10.1016/j.cytogfr.2014.05.003
[33]
Bengoechea-Alonso MT, Ericsson J (2007) SREBP in signal transduction: cholesterol metabolism and beyond. Current Opinion in Cell Biology 19: 215–222. pmid:17303406 doi: 10.1016/j.ceb.2007.02.004
[34]
Nohturfft A, Yabe D, Goldstein JL, Brown MS, Espenshade PJ (2000) Regulated step in cholesterol feedback localized to budding of SCAP from ER membranes. Cell 102: 315–323. pmid:10975522 doi: 10.1016/s0092-8674(00)00037-4
[35]
Yabe D, Xia ZP, Adams CM, Rawson RB (2002) Three mutations in sterol-sensing domain of SCAP block interaction with insig and render SREBP cleavage insensitive to sterols. Proc Natl Acad Sci U S A 99: 16672–16677. pmid:12482938 doi: 10.1073/pnas.262669399
[36]
Motamed M, Zhang Y, Wang ML, Seemann J, Kwon HJ, Goldstein JL, et al. (2011) Identification of luminal Loop 1 of Scap protein as the sterol sensor that maintains cholesterol homeostasis. J Biol Chem 286: 18002–18012. doi: 10.1074/jbc.M111.238311. pmid:21454655
[37]
York AG, Williams KJ, Argus JP, Zhou QD, Brar G, Vergnes L, et al. (2015) Limiting Cholesterol Biosynthetic Flux Spontaneously Engages Type I IFN Signaling. Cell 163: 1716–1729. doi: 10.1016/j.cell.2015.11.045. pmid:26686653
[38]
Schoggins JW, MacDuff DA, Imanaka N, Gainey MD, Shrestha B, Eitson JL, et al. (2014) Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature 505: 691–695. doi: 10.1038/nature12862. pmid:24284630
[39]
Dobbs N, Burnaevskiy N, Chen D, Gonugunta VK, Alto NM, Yan N (2015) STING Activation by Translocation from the ER Is Associated with Infection and Autoinflammatory Disease. Cell Host Microbe 18: 157–168. doi: 10.1016/j.chom.2015.07.001. pmid:26235147
[40]
Shi HX, Liu X, Wang Q, Tang PP, Liu XY, Shan YF, et al. (2011) Mitochondrial Ubiquitin Ligase MARCH5 Promotes TLR7 Signaling by Attenuating TANK Action. Plos Pathogens 7. doi: 10.1371/journal.ppat.1002057
[41]
Liu XY, Chen W, Wei B, Shan YF, Wang C (2011) IFN-induced TPR protein IFIT3 potentiates antiviral signaling by bridging MAVS and TBK1. J Immunol 187: 2559–2568. doi: 10.4049/jimmunol.1100963. pmid:21813773
[42]
Liu X, Chen W, Wang Q, Li L, Wang C (2013) Negative regulation of TLR inflammatory signaling by the SUMO-deconjugating enzyme SENP6. PLoS Pathog 9: e1003480. doi: 10.1371/journal.ppat.1003480. pmid:23825957
[43]
Karatas H, Erdener SE, Gursoy-Ozdemir Y, Lule S, Eren-Kocak E, Sen ZD, et al. (2013) Spreading depression triggers headache by activating neuronal Panx1 channels. Science 339: 1092–1095. doi: 10.1126/science.1231897. pmid:23449592
[44]
Stefanov AN, Fox J, Depault F, Haston CK (2013) Positional cloning reveals strain-dependent expression of Trim16 to alter susceptibility to bleomycin-induced pulmonary fibrosis in mice. PLoS Genet 9: e1003203. doi: 10.1371/journal.pgen.1003203. pmid:23341783