全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cytokinin Production by the Rice Blast Fungus Is a Pivotal Requirement for Full Virulence

DOI: 10.1371/journal.ppat.1005457

Full-Text   Cite this paper   Add to My Lib

Abstract:

Plants produce cytokinin (CK) hormones for controlling key developmental processes like source/sink distribution, cell division or programmed cell-death. Some plant pathogens have been shown to produce CKs but the function of this mimicry production by non-tumor inducing pathogens, has yet to be established. Here we identify a gene required for CK biosynthesis, CKS1, in the rice blast fungus Magnaporthe oryzae. The fungal-secreted CKs are likely perceived by the plant during infection since the transcriptional regulation of rice CK-responsive genes is altered in plants infected by the mutants in which CKS1 gene was deleted. Although cks1 mutants showed normal in vitro growth and development, they were severely affected for in planta growth and virulence. Moreover, we showed that the cks1 mutant triggered enhanced induction of plant defenses as manifested by an elevated oxidative burst and expression of defense-related markers. In addition, the contents of sugars and key amino acids for fungal growth were altered in and around the infection site by the cks1 mutant in a different manner than by the control strain. These results suggest that fungal-derived CKs are key effectors required for dampening host defenses and affecting sugar and amino acid distribution in and around the infection site.

References

[1]  Kamoun S. (2007) Groovy times: filamentous pathogen effectors revealed. Curr. Opin. Plant Biol. 10, 358–365 pmid:17611143 doi: 10.1016/j.pbi.2007.04.017
[2]  Macho A.P. and Zipfel C. (2015) Targeting of plant pattern recognition receptor- triggered immunity by bacterial type-III secretion system effectors. Curr. Opin. Microbiol. 23, 14–22 doi: 10.1016/j.mib.2014.10.009. pmid:25461568
[3]  Verdier V. et al. (2012) Transcription activator-like (TAL) effectors targeting OsSWEET genes enhance virulence on diverse rice (Oryza sativa) varieties when expressed individually in a TAL effector-deficient strain of Xanthomonas oryzae. New Phytol. 196, 1197–1207 doi: 10.1111/j.1469-8137.2012.04367.x. pmid:23078195
[4]  Hogenhout S.A. et al. (2009) Emerging Concepts in Effector Biology of Plant-Associated Organisms. Mol. Plant-Microbe Interact. 22, 115–122 doi: 10.1094/MPMI-22-2-0115. pmid:19132864
[5]  Zipfel C. (2009) Early molecular events in PAMP-triggered immunity. Curr. Opin. Plant Biol. 12, 414–20 doi: 10.1016/j.pbi.2009.06.003. pmid:19608450
[6]  Mentlak T. et al. (2012) Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. Plant Cell 24, 322–35 doi: 10.1105/tpc.111.092957. pmid:22267486
[7]  Pitzschke A. et al. (2009) MAPK cascade signalling networks in plant defence. Curr. Opin. Plant Biol. 12, 421–426 doi: 10.1016/j.pbi.2009.06.008. pmid:19608449
[8]  Robert-Seilaniantz A. et al. (2007) Pathological hormone imbalances. Curr. Opin. Plant Biol. 10, 372–9 pmid:17646123 doi: 10.1016/j.pbi.2007.06.003
[9]  Chen Z. et al. (2007) Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. Proc. Natl. Acad. Sci. U. S. A. 104, 20131–20136 pmid:18056646 doi: 10.1073/pnas.0704901104
[10]  Thatcher L.F. et al. (2009) Fusarium oxysporum hijacks COI1-mediated jasmonate signaling to promote disease development in Arabidopsis. Plant J. 58, 927–939 doi: 10.1111/j.1365-313X.2009.03831.x. pmid:19220788
[11]  Verhage A. et al. (2010) Plant immunity: it’s the hormones talking, but what do they say? Plant Physiol. 154, 536–40 doi: 10.1104/pp.110.161570. pmid:20921180
[12]  Djamei A. et al. (2011) Metabolic priming by a secreted fungal effector. Nature 478, 395–8 doi: 10.1038/nature10454. pmid:21976020
[13]  Patkar R.N. et al. (2015) A fungal monooxygenase-derived jasmonate attenuates host innate immunity. Nat. Chem. Biol. doi: 10.1038/nchembio.1885.
[14]  Melotto M. et al. (2008) Role of stomata in plant innate immunity and foliar bacterial diseases. Annu. Rev. Phytopathol. 46, 101–122 doi: 10.1146/annurev.phyto.121107.104959. pmid:18422426
[15]  Uppalapati S.R. et al. (2007) The phytotoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with Pseudomonas syringae pv. tomato DC3000. Mol. Plant. Microbe. Interact. 20, 955–965 pmid:17722699 doi: 10.1094/mpmi-20-8-0955
[16]  Greene E.M. (1980) Cytokinin production by microorganismes. Bot. Rev. 46, 25–74 doi: 10.1007/bf02860866
[17]  Gruen H.E. (1959) Auxins and Fungi. Annu. Rev. Plant Physiol. 10, 405–440 doi: 10.1146/annurev.pp.10.060159.002201
[18]  Hedden P. et al. (2001) Gibberellin Biosynthesis in Plants and Fungi: A Case of Convergent Evolution? J. Plant Growth Regul. 20, 319–331 pmid:11986758 doi: 10.1007/s003440010037
[19]  Kisiala A. et al. (2013) Bioactive cytokinins are selectively secreted by Sinorhizobium meliloti nodulating and nonnodulating strains. Mol. Plant. Microbe. Interact. 26, 1225–31 doi: 10.1094/MPMI-02-13-0054-R. pmid:24001254
[20]  ?zcan B. and Top?uoglu S.F. (2001) GA 3, ABA and Cytokinin Production by Lentinus tigrinus and Laetiporus sulphureus Fungi Cultured in the Medium of Olive Oil Mill Waste *. Turk J Biol 25, 453–462
[21]  Strzelczyk E. et al. (1994) Cytokinin-like substances and ethylene production by Azospirillum in media with different carbon sources. Microbiol. Res. 149, 55–60 doi: 10.1016/s0944-5013(11)80136-9
[22]  Strzelczyk E. and Pokojska-Burdziej A. (1984) Production of auxins and gibberellin-like substances by mycorrhyzal fungi, bacteria and actinomycetes isolated from soil and the mycorrhizosphere. Plant Soil 81, 185–194 doi: 10.1007/bf02197150
[23]  Dihanich M.E. et al. (1987) Isolation and characterization of MOD5, a gene required for isopentenylation of cytoplasmic and mitochondrial tRNAs of Saccharomyces cerevisiae. Mol. Cell. Biol. 7, 177–184 pmid:3031456 doi: 10.1128/mcb.7.1.177
[24]  Golovko A. et al. (2002) Identification of a tRNA isopentenyltransferase gene from Arabidopsis thaliana. Plant Mol. Biol. 49, 161–169 pmid:11999372
[25]  Miyawaki K. et al. (2006) Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0603522103
[26]  Riou-Khamlichi C. et al. (1999) Cytokinin Activation of Arabidopsis Cell Division Through a D-Type Cyclin. Science (80-.). 283, 1541–1545 doi: 10.1126/science.283.5407.1541
[27]  Carimi F. et al. (2003) Cytokinins: new apoptotic inducers in plants. Planta 216, 413–421 pmid:12520332
[28]  Fosket D.E. and Torrey J.G. (1969) Hormonal control of cell proliferation and xylem differentiation in cultured tissues of Glycine max var. Biloxi. Plant Physiol. 44, 871–880 pmid:5816361 doi: 10.1104/pp.44.6.871
[29]  Peleg Z. et al. (2011) Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotechnol. J. 9, 747–758 doi: 10.1111/j.1467-7652.2010.00584.x. pmid:21284800
[30]  Vescovi M. et al. (2012) Programmed cell death induced by high levels of cytokinin in Arabidopsis cultured cells is mediated by the cytokinin receptor CRE1/AHK4. J. Exp. Bot. 63, 2825–2832 doi: 10.1093/jxb/ers008. pmid:22312114
[31]  Morrison E.N. et al. (2015) Phytohormone Involvement in the Ustilago maydis–Zea mays Pathosystem: Relationships between Abscisic Acid and Cytokinin Levels and Strain Virulence in Infected Cob Tissue. PLoS One 10, e0130945 doi: 10.1371/journal.pone.0130945. pmid:26107181
[32]  Hinsch J. et al. (2015) De novo biosynthesis of cytokinins in the biotrophic fungus Claviceps purpurea. Environ. Microbiol. 17, 2935–2951 doi: 10.1111/1462-2920.12838. pmid:25753486
[33]  Devos S. et al. (2006) A hormone and proteome approach to picturing the initial metabolic events during Plasmodiophora brassicae infection on Arabidopsis. Mol. Plant. Microbe. Interact. 19, 1431–1443 pmid:17153927 doi: 10.1094/mpmi-19-1431
[34]  Pertry I. et al. (2009) Identification of Rhodococcus fascians cytokinins and their modus operandi to reshape the plant. Proc. Natl. Acad. Sci. U. S. A. 106, 929–34 doi: 10.1073/pnas.0811683106. pmid:19129491
[35]  Wingler A. et al. (1998) Regulation of Leaf Senescence by Cytokinin, Sugars, and Light. Plant Physiol. 116, 329–335 doi: 10.1104/pp.116.1.329
[36]  Walters D.R. and McRoberts N. (2006) Plants and biotrophs: a pivotal role for cytokinins? Trends Plant Sci. 11, 581–586 pmid:17092762 doi: 10.1016/j.tplants.2006.10.003
[37]  Angra-Sharma R. and Sharma D.K. (1999) Cytokinins in pathogenesis and disease resistance of Pyrenophora teres-barley and Dreschslera maydis-maize interactions during early stages of infection. Mycopathologia 148, 87–95 pmid:11189749
[38]  Behr M. et al. (2012) Remodeling of cytokinin metabolism at infection sites of Colletotrichum graminicola on maize leaves. Mol. Plant. Microbe. Interact. 25, 1073–82 doi: 10.1094/MPMI-01-12-0012-R. pmid:22746825
[39]  Angra R. and Mandahar C.L. (1991) Pathogenesis of barley leaves by Helminthosporium teres I: Green island formation and the possible involvement of cytokinins. Mycopathologia 114, 21–27 doi: 10.1007/bf00436687
[40]  Morrison E.N. et al. (2015) Detection of phytohormones in temperate forest fungi predicts consistent abscisic acid production and a common pathway for cytokinin biosynthesis. Mycologia 107, 245–257 doi: 10.3852/14-157. pmid:25572099
[41]  Murphy A.M. et al. (1997) Comparison of cytokinin production in vitro by Pyrenopeziza brassicae with other plant pathogens. Physiol. Mol. Plant Pathol. 50, 53–65
[42]  Hu G.G. and Rijkenberg E.H.J. (1998) Ultrastructural localization of cytokinins in Puccinia recondita f.sp. tritici-infected wheat leaves. Physiol. Mol. Plant Pathol. 52, 79–94 doi: 10.1006/pmpp.1997.0136
[43]  Jiang C.-J. et al. (2013) Cytokinins act synergistically with salicylic acid to activate defense gene expression in rice. Mol. Plant. Microbe. Interact. 26, 287–96 doi: 10.1094/MPMI-06-12-0152-R. pmid:23234404
[44]  Sakakibara H. (2006) Cytokinins: activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 57, 431–49 pmid:16669769 doi: 10.1146/annurev.arplant.57.032905.105231
[45]  Armstrong D.J. et al. (1969) Cytokinins: distribution in species of yeast transfer RNA. Biochemistry 63, 504–511 doi: 10.1073/pnas.63.2.504
[46]  Zhang Y. (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9, 40 doi: 10.1186/1471-2105-9-40. pmid:18215316
[47]  Golovko A. (2000) Cloning of a human tRNA isopentenyl transferase. Gene 258, 85–93 pmid:11111046 doi: 10.1016/s0378-1119(00)00421-2
[48]  Pai D.A. et al. (2014) Correction for Pratt-Hyatt et al., Mod5 protein binds to tRNA gene complexes and affects local transcriptional silencing. Proc. Natl. Acad. Sci. 111, 2397–2397 doi: 10.1073/pnas.1400058111
[49]  Suzuki G. et al. (2012) A yeast prion, Mod5, promotes acquired drug resistance and cell survival under environmental stress. Science 336, 355–9 doi: 10.1126/science.1219491. pmid:22517861
[50]  Farrow S.C. and Emery R.J.N. (2012) Concurrent profiling of indole-3-acetic acid, abscisic acid, and cytokinins and structurally related purines by high-performance-liquid- chromatography tandem electrospray mass spectrometry Concurrent profiling of indole-3-acetic acid, abscisic acid,. Plant Methods 8, 42 doi: 10.1186/1746-4811-8-42. pmid:23061971
[51]  Brandstatter I. and Kieber J.J. (1998) Two Genes with Similarity to Bacterial Response Regulators Are Rapidly and Specifically Induced by Cytokinin in Arabidopsis. Plant Cell 10, 1009–1019 pmid:9634588 doi: 10.2307/3870686
[52]  Jain M. et al. (2006) Molecular characterization and differential expression of cytokinin-responsive type-A response regulators in rice (Oryza sativa). BMC Plant Biol. 6, 1 pmid:16472405
[53]  Pareek A. et al. (2006) Whole-genome analysis of Oryza sativa reveals similar architecture of two-component signaling machinery with Arabidopsis. Plant Physiol. 142, 380–97 pmid:16891544 doi: 10.1104/pp.106.086371
[54]  Chi M.-H. et al. (2009) A novel pathogenicity gene is required in the rice blast fungus to suppress the basal defenses of the host. PLoS Pathog. 5, e1000401 doi: 10.1371/journal.ppat.1000401. pmid:19390617
[55]  Desikan R. et al. (1996) Generation of active oxygen in elicited cells of Arabidopsis thaliana is mediated by a N A D P H oxidase-like enzyme. FEBS Lett. 382, 213–217 pmid:8612756 doi: 10.1016/0014-5793(96)00177-9
[56]  Nakashita H. et al. (2001) Characterization of PBZ1, a probenazole-inducible gene, in suspension-cultured rice cells. Biosci. Biotechnol. Biochem. 65, 205–208 pmid:11272832 doi: 10.1271/bbb.65.205
[57]  Delteil A. et al. (2012) Building a mutant resource for the study of disease resistance in rice reveals the pivotal role of several genes involved in defence. Mol. Plant Pathol. 13, 72–82 doi: 10.1111/j.1364-3703.2011.00731.x. pmid:21726398
[58]  Kaku H. et al. (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc. Natl. Acad. Sci. 103, 11086–11091 pmid:16829581 doi: 10.1073/pnas.0508882103
[59]  Kishimoto K. et al. (2010) Perception of the chitin oligosaccharides contributes to disease resistance to blast fungus Magnaporthe oryzae in rice. Plant J. 64, 343–54 doi: 10.1111/j.1365-313X.2010.04328.x. pmid:21070413
[60]  Otani Y. (1959) Studies on the relation between the principal components of the rice plant and its susceptibility to the blast disease. Annu. Phytopathol. Soc. Japan 16, 97–102 doi: 10.3186/jjphytopath.16.97
[61]  Ballini E. et al. (2013) Diversity and genetics of nitrogen-induced susceptibility to the blast fungus in rice and wheat. Rice 6, 32 doi: 10.1186/1939-8433-6-32. pmid:24280346
[62]  Parker D. et al. (2009) Metabolomic analysis reveals a common pattern of metabolic re-programming during invasion of three host plant species by Magnaporthe grisea. Plant J. 59, 723–37 doi: 10.1111/j.1365-313X.2009.03912.x. pmid:19453445
[63]  Kocal N. et al. (2008) Cell wall-bound invertase limits sucrose export and is involved in symptom development and inhibition of photosynthesis during compatible interaction between tomato and Xanthomonas campestris pv vesicatoria. Plant Physiol. 148, 1523–1536 doi: 10.1104/pp.108.127977. pmid:18784281
[64]  Rivero R.M. et al. (2009) Cytokinin-dependent photorespiration and the protection of photosynthesis during water deficit. Plant Physiol. 150, 1530–40 doi: 10.1104/pp.109.139378. pmid:19411371
[65]  Persson B.C. et al. (1994) Synthesis and function of isopentenyl adenosine derivatives in tRNA. Biochimie 76, 1152–1160 pmid:7748950 doi: 10.1016/0300-9084(94)90044-2
[66]  Vizarova G. (1975) Contribution to the Study of Cytokinin Production by Phytopathogenic Fungi. Biol. Plant. 17, 380–382 doi: 10.1007/bf02921167
[67]  Ng P.P. et al. (1982) Cytokinin production by ectomycorrhizal fungi. New Phytol. 91, 57–62 doi: 10.1111/j.1469-8137.1982.tb03292.x
[68]  Laten H.M. and Zahareas-doktor S. (1985) Presence and source of free isopentenyladenosine in yeasts. Proc. Natl. Acad. Sci. U. S. A. 82, 1113–1115 pmid:3883351 doi: 10.1073/pnas.82.4.1113
[69]  Tsai Y.-C. et al. (2012) Characterization of genes involved in cytokinin signaling and metabolism from rice. Plant Physiol. 158, 1666–84 doi: 10.1104/pp.111.192765. pmid:22383541
[70]  Chang C. and Stewart R.C. (1998) The two-component system. Regulation of diverse signaling pathways in prokaryotes and eukaryotes. Plant Physiol. 117, 723–731 pmid:9662515 doi: 10.1104/pp.117.3.723
[71]  Lohrmann J. and Harter K. (2002) Plant two-component signaling systems and the role of response regulators. Plant Physiol. 128, 363–369 pmid:11842140 doi: 10.1104/pp.010907
[72]  Saito H. et al. (2001) Histidine Phosphorylation and Two-Component Signaling in Eukaryotic Cells. Chem. Rev. 101, 2497–2509 pmid:11749385 doi: 10.1021/cr000243+
[73]  Stock A.M. et al. (2000) Two-Component Signal Transduction. Annu. Rev. Biochem. 69, 183–215 pmid:10966457 doi: 10.1146/annurev.biochem.69.1.183
[74]  Alex L.A. et al. (1996) Hyphal development in Neurospora crassa: Involvement of a two-component histidine kinase. Proc. Natl. Acad. Sci. U. S. A. 93, 3416–3421 pmid:8622950 doi: 10.1073/pnas.93.8.3416
[75]  Motoyama T. et al. (2008) Involvement of putative response regulator genes of the rice blast fungus Magnaporthe oryzae in osmotic stress response, fungicide action, and pathogenicity. Curr. Genet. 54, 185–195 doi: 10.1007/s00294-008-0211-0. pmid:18726099
[76]  Zhang H. et al. (2010) A two-component histidine kinase, MoSLN1, is required for cell wall integrity and pathogenicity of the rice blast fungus, Magnaporthe oryzae. Curr. Genet. 56, 517–528 doi: 10.1007/s00294-010-0319-x. pmid:20848286
[77]  Li G. et al. (2012) Genetic control of infection-related development in Magnaporthe oryzae. Curr. Opin. Microbiol. 15, 678–84 doi: 10.1016/j.mib.2012.09.004. pmid:23085322
[78]  Dong Y. et al. (2015) Global Genome and Transcriptome Analyses of Magnaporthe oryzae Epidemic Isolate 98–06 Uncover Novel Effectors and Pathogenicity-Related Genes, Revealing Gene Gain and Lose Dynamics in Genome Evolution. PLOS Pathog. 11, e1004801 doi: 10.1371/journal.ppat.1004801. pmid:25837042
[79]  Morkunas I. and Ratajczak L. (2014) The role of sugar signaling in plant defense responses against fungal pathogens. Acta Physiol. Plant. 36, 1607–1619 doi: 10.1007/s11738-014-1559-z
[80]  Bolton M.D. (2009) Primary metabolism and plant defense—fuel for the fire. Mol. Plant. Microbe. Interact. 22, 487–497 doi: 10.1094/MPMI-22-5-0487. pmid:19348567
[81]  Sakakibara H. et al. (2006) Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends Plant Sci. 11, 440–8 pmid:16899391 doi: 10.1016/j.tplants.2006.07.004
[82]  LeJohn H.B. and Stevenson R.M. (1973) Cytokinins and magnesium ions may control the flow of metabolites and calcium ions through fungal cell membranes. Biochim. Biophys. Res. Commun. 54, 1061–1066 doi: 10.1016/0006-291x(73)90801-2
[83]  Durner J. et al. (1997) Salicylic acid and disease resistance in plants. Trends Plant Sci. 2, 266–274 doi: 10.1016/s1360-1385(97)86349-2
[84]  León J. and Lawton M.A. (1995) Hydrogen Peroxide Stimulates Salicylic Acid Biosynthesis in Tobacco ‘. Plant Physiol. 108, 1673–1678 pmid:12228572
[85]  Pogány M. et al. (2004) Juvenility of tobacco induced by cytokinin gene introduction decreases susceptibility to Tobacco necrosis virus and confers tolerance to oxidative stress. Physiol. Mol. Plant Pathol. 65, 39–47 doi: 10.1016/j.pmpp.2004.10.006
[86]  Akagi A. et al. (2014) WRKY45-dependent priming of diterpenoid phytoalexin biosynthesis in rice and the role of cytokinin in triggering the reaction. Plant Mol. Biol. 86, 171–83 doi: 10.1007/s11103-014-0221-x. pmid:25033935
[87]  Cheng H. et al. (2015) The WRKY45-2—WRKY13—WRKY42 Transcriptional Regulatory Cascade Is Required for Rice Resistance to Fungal Pathogen. Plant Physiol. 167, 1087–1099 doi: 10.1104/pp.114.256016. pmid:25624395
[88]  Choi J. et al. (2011) Cytokinins and plant immunity: old foes or new friends? Trends Plant Sci. 16, 388–94 doi: 10.1016/j.tplants.2011.03.003. pmid:21470894
[89]  Giron D. et al. (2013) Cytokinins as key regulators in plant-microbe-insect interactions: connecting plant growth and defence. Funct. Ecol. 27, 599–609 doi: 10.1111/1365-2435.12042
[90]  Drüge U. and Schonbeck F. (1993) Effect of vesicular-arbuscular mycorrhizal infection on transpiration, photosynthesis and growth of flax (Linum usitatissimum L.) in relation to cytokinin levels. J. Plant Physiol. 141, 40–48 doi: 10.1016/s0176-1617(11)80849-7
[91]  Frugier F. et al. (2008) Cytokinin: secret agent of symbiosis. Trends Plant Sci. 13, 115–20 doi: 10.1016/j.tplants.2008.01.003. pmid:18296104
[92]  Ribot C. et al. (2013) The Magnaporthe oryzae effector AVR1-CO39 is translocated into rice cells independently of a fungal-derived machinery. Plant J. 74, 1–12 doi: 10.1111/tpj.12099. pmid:23279638
[93]  B?hnert H. et al. (2004) A Putative Polyketide Synthase / Peptide Synthetase from Magnaporthe grisea Signals Pathogen Attack to Resistant Rice. Plant Cell 16, 2499–2513 pmid:15319478 doi: 10.1105/tpc.104.022715
[94]  K?mper J. (2004) A PCR-based system for highly efficient generation of gene replacement mutants in Ustilago maydis. Mol. Genet. Genomics 271, 103–10 pmid:14673645 doi: 10.1007/s00438-003-0962-8
[95]  Ou, S.H. (1985) Rice Diseases.
[96]  Berruyer R. et al. (2003) Identification and fine mapping of Pi33, the rice resistance gene corresponding to the Magnaporthe grisea avirulence gene ACE1. Theor. Appl. Genet. 107, 1139–47 pmid:12838393 doi: 10.1007/s00122-003-1349-2
[97]  Faivre-rampant O. et al. (2008) Characterization of the model system rice—Magnaporthe for the study of nonhost resistance in cereals. New Phytol. 180, 899–910 doi: 10.1111/j.1469-8137.2008.02621.x. pmid:19138233
[98]  Gravot A. et al. (2010) Diurnal oscillations of metabolite abundances and gene analysis provide new insights into central metabolic processes of the brown alga Ectocarpus siliculosus. New Phytol. 188, 98–110 pmid:20862781 doi: 10.1111/j.1469-8137.2010.03400.x
[99]  Zhou C. and Huang R.H. (2008) Crystallographic snapshots of eukaryotic dimethylallyltransferase acting on tRNA: insight into tRNA recognition and reaction mechanism. Proc. Natl. Acad. Sci. U. S. A. 105, 16142–16147 doi: 10.1073/pnas.0805680105. pmid:18852462
[100]  Dereeper a. et al. (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 36, 465–469

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133