全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Nitric Oxide Protects against Infection-Induced Neuroinflammation by Preserving the Stability of the Blood-Brain Barrier

DOI: 10.1371/journal.ppat.1005442

Full-Text   Cite this paper   Add to My Lib

Abstract:

Nitric oxide (NO) generated by inducible NO synthase (iNOS) is critical for defense against intracellular pathogens but may mediate inflammatory tissue damage. To elucidate the role of iNOS in neuroinflammation, infections with encephalitogenic Trypanosoma brucei parasites were compared in inos-/- and wild-type mice. Inos-/- mice showed enhanced brain invasion by parasites and T cells, and elevated protein permeability of cerebral vessels, but similar parasitemia levels. Trypanosome infection stimulated T cell- and TNF-mediated iNOS expression in perivascular macrophages. NO nitrosylated and inactivated pro-inflammatory molecules such as NF-κΒp65, and reduced TNF expression and signalling. iNOS-derived NO hampered both TNF- and T cell-mediated parasite brain invasion. In inos-/- mice, TNF stimulated MMP, including MMP9 activity that increased cerebral vessel permeability. Thus, iNOS-generated NO by perivascular macrophages, strategically located at sites of leukocyte brain penetration, can serve as a negative feed-back regulator that prevents unlimited influx of inflammatory cells by restoring the integrity of the blood-brain barrier.

References

[1]  Bogdan C Nitric oxide synthase in innate and adaptive immunity: an update. Trends Immunol. 2015; 36: 161–178. doi: 10.1016/j.it.2015.01.003. pmid:25687683
[2]  Thiel VE, Audus KL Nitric oxide and blood-brain barrier integrity. Antioxid Redox Signal. 2001; 3: 273–278. pmid:11396481 doi: 10.1089/152308601300185223
[3]  Smith KJ, Lassmann H The role of nitric oxide in multiple sclerosis. Lancet Neurol. 2002; 1: 232–241. pmid:12849456 doi: 10.1016/s1474-4422(02)00102-3
[4]  Cauwels A, Van Molle W, Janssen B, Everaerdt B, Huang P, Fiers W, et al. Protection against TNF-induced lethal shock by soluble guanylate cyclase inhibition requires functional inducible nitric oxide synthase. Immunity. 2000; 13: 223–231. pmid:10981965 doi: 10.1016/s1074-7613(00)00022-4
[5]  Dumas M, Bisser S (1999) Clinical aspects of human African trypanosomiasis. In: Dumas M, Bouteille B, Buguet A, editors. Progress in human African trypanosomiasis, sleeping sickness. Paris: Springer. pp. 215–233.
[6]  Kristensson K, Nygard M, Bertini G, Bentivoglio M African trypanosome infections of the nervous system: parasite entry and effects on sleep and synaptic functions. Progress in neurobiology. 2010; 91: 152–171. doi: 10.1016/j.pneurobio.2009.12.001. pmid:19995590
[7]  Amin DN, Vodnala SK, Masocha W, Sun B, Kristensson K, Rottenberg ME Distinct Toll-like receptor signals regulate cerebral parasite load and interferon alpha/beta and tumor necrosis factor alpha-dependent T-cell infiltration in the brains of Trypanosoma brucei-infected mice. J Infect Dis. 2012; 205: 320–332. doi: 10.1093/infdis/jir734. pmid:22116836
[8]  Amin DN, Rottenberg ME, Thomsen AR, Mumba D, Fenger C, Kristensson K, et al. Expression and role of CXCL10 during the encephalitic stage of experimental and clinical African trypanosomiasis. The Journal of infectious diseases. 2009; 200: 1556–1565. doi: 10.1086/644597. pmid:19827943
[9]  Masocha W, Robertson B, Rottenberg ME, Mhlanga J, Sorokin L, Kristensson K Cerebral vessel laminins and IFN-gamma define Trypanosoma brucei brucei penetration of the blood-brain barrier. J Clin Invest. 2004; 114: 689–694. pmid:15343387 doi: 10.1172/jci22104
[10]  Keita M, Vincendeau P, Buguet A, Cespuglio R, Vallat JM, Dumas M, et al. Inducible nitric oxide synthase and nitrotyrosine in the central nervous system of mice chronically infected with Trypanosoma brucei brucei. Exp Parasitol. 2000; 95: 19–27. pmid:10864514 doi: 10.1006/expr.2000.4505
[11]  MacLean L, Odiit M, Sternberg JM Nitric oxide and cytokine synthesis in human African trypanosomiasis. J Infect Dis. 2001; 184: 1086–1090. pmid:11574928 doi: 10.1086/323479
[12]  Sternberg JM, Njogu Maina N, Gickhuki CW, Ndung UJ Nitric oxide production in vervet monkeys (Cercopithecus aethiops) infected with Trypanosoma brucei. Parasite Immunol. 1998; 20: 395–397. pmid:9767605 doi: 10.1046/j.1365-3024.1998.00164.x
[13]  Magez S, Radwanska M, Drennan M, Fick L, Baral TN, Brombacher F, et al. Interferon-gamma and nitric oxide in combination with antibodies are key protective host immune factors during trypanosoma congolense Tc13 Infections. The Journal of infectious diseases. 2006; 193: 1575–1583. pmid:16652287 doi: 10.1086/503808
[14]  Wei G, Bull H, Zhou X, Tabel H Intradermal infections of mice by low numbers of african trypanosomes are controlled by innate resistance but enhance susceptibility to reinfection. The Journal of infectious diseases. 2011; 203: 418–429. doi: 10.1093/infdis/jiq051. pmid:21208931
[15]  Mabbott N, Sternberg J Bone marrow nitric oxide production and development of anemia in Trypanosoma brucei-infected mice. Infect Immun. 1995; 63: 1563–1566. pmid:7890423
[16]  Sternberg J, Mabbott N, Sutherland I, Liew FY Inhibition of nitric oxide synthesis leads to reduced parasitemia in murine Trypanosoma brucei infection. Infection and Immunity. 1994; 62: 2135–2137. pmid:8168985
[17]  Hertz CJ, Mansfield JM IFN-gamma-dependent nitric oxide production is not linked to resistance in experimental African trypanosomiasis. Cellular immunology. 1999; 192: 24–32. pmid:10066343 doi: 10.1006/cimm.1998.1429
[18]  Millar AE, Sternberg J, McSharry C, Wei XQ, Liew FY, Turner CM T-Cell responses during Trypanosoma brucei infections in mice deficient in inducible nitric oxide synthase. Infection and Immunity. 1999; 67: 3334–3338. pmid:10377110
[19]  Hamm S, Dehouck B, Kraus J, Wolburg-Buchholz K, Wolburg H, Risau W, et al. Astrocyte mediated modulation of blood-brain barrier permeability does not correlate with a loss of tight junction proteins from the cellular contacts. Cell Tissue Res. 2004; 315: 157–166. pmid:14615934 doi: 10.1007/s00441-003-0825-y
[20]  Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, et al. Pericytes regulate the blood-brain barrier. Nature. 2010; 468: 557–561. doi: 10.1038/nature09522. pmid:20944627
[21]  Marques CP, Cheeran MC, Palmquist JM, Hu S, Urban SL, Lokensgard JR Prolonged microglial cell activation and lymphocyte infiltration following experimental herpes encephalitis. J Immunol. 2008; 181: 6417–6426. pmid:18941232 doi: 10.4049/jimmunol.181.9.6417
[22]  Malemud CJ Matrix metalloproteinases (MMPs) in health and disease: an overview. Front Biosci. 2006; 11: 1696–1701. pmid:16368548 doi: 10.2741/1915
[23]  Amin DN, Ngoyi DM, Nhkwachi GM, Palomba M, Rottenberg M, Buscher P, et al. Identification of stage biomarkers for human African trypanosomiasis. Am J Trop Med Hyg. 2010; 82: 983–990. doi: 10.4269/ajtmh.2010.09-0770. pmid:20519589
[24]  Masocha W, Rottenberg ME, Kristensson K Minocycline impedes African trypanosome invasion of the brain in a murine model. Antimicrob Agents Chemother. 2006; 50: 1798–1804. pmid:16641452 doi: 10.1128/aac.50.5.1798-1804.2006
[25]  Brundula V, Rewcastle NB, Metz LM, Bernard CC, Yong VW Targeting leukocyte MMPs and transmigration: minocycline as a potential therapy for multiple sclerosis. Brain. 2002; 125: 1297–1308. pmid:12023318 doi: 10.1093/brain/awf133
[26]  Amrouni D, Gautier-Sauvigne S, Meiller A, Vincendeau P, Bouteille B, Buguet A, et al. Cerebral and peripheral changes occurring in nitric oxide (NO) synthesis in a rat model of sleeping sickness: identification of brain iNOS expressing cells. PloS one. 2010; 5: e9211. doi: 10.1371/journal.pone.0009211. pmid:20169057
[27]  Owens T, Bechmann I, Engelhardt B Perivascular spaces and the two steps to neuroinflammation. J Neuropathol Exp Neurol. 2008; 67: 1113–1121. doi: 10.1097/NEN.0b013e31818f9ca8. pmid:19018243
[28]  Grab DJ, Kennedy PG Traversal of human and animal trypanosomes across the blood-brain barrier. J Neurovirol. 2008; 14: 344–351. doi: 10.1080/13550280802282934. pmid:19016378
[29]  De Muylder G, Daulouede S, Lecordier L, Uzureau P, Morias Y, Van Den Abbeele J, et al. A Trypanosoma brucei kinesin heavy chain promotes parasite growth by triggering host arginase activity. PLoS Pathog. 2013; 9: e1003731. doi: 10.1371/journal.ppat.1003731. pmid:24204274
[30]  Bocedi A, Dawood KF, Fabrini R, Federici G, Gradoni L, Pedersen JZ, et al. Trypanothione efficiently intercepts nitric oxide as a harmless iron complex in trypanosomatid parasites. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 2010; 24: 1035–1042. doi: 10.1096/fj.09-146407
[31]  Khan M, Jatana M, Elango C, Paintlia AS, Singh AK, Singh I Cerebrovascular protection by various nitric oxide donors in rats after experimental stroke. Nitric Oxide. 2006; 15: 114–124. pmid:16524750 doi: 10.1016/j.niox.2006.01.008
[32]  Gramaglia I, Sobolewski P, Meays D, Contreras R, Nolan JP, Frangos JA, et al. Low nitric oxide bioavailability contributes to the genesis of experimental cerebral malaria. Nature medicine. 2006; 12: 1417–1422. pmid:17099710 doi: 10.1038/nm1499
[33]  Jeney V, Ramos S, Bergman ML, Bechmann I, Tischer J, Ferreira A, et al. Control of disease tolerance to malaria by nitric oxide and carbon monoxide. Cell Rep. 2014; 8: 126–136. doi: 10.1016/j.celrep.2014.05.054. pmid:24981859
[34]  Hobbs MR, Udhayakumar V, Levesque MC, Booth J, Roberts JM, Tkachuk AN, et al. A new NOS2 promoter polymorphism associated with increased nitric oxide production and protection from severe malaria in Tanzanian and Kenyan children. Lancet. 2002; 360: 1468–1475. pmid:12433515 doi: 10.1016/s0140-6736(02)11474-7
[35]  Trovoada Mde J, Martins M, Ben Mansour R, Sambo Mdo R, Fernandes AB, Antunes Goncalves L, et al. NOS2 variants reveal a dual genetic control of nitric oxide levels, susceptibility to Plasmodium infection, and cerebral malaria. Infect Immun. 2014; 82: 1287–1295. doi: 10.1128/IAI.01070-13. pmid:24379293
[36]  Anstey NM, Weinberg JB, Hassanali MY, Mwaikambo ED, Manyenga D, Misukonis MA, et al. Nitric oxide in Tanzanian children with malaria: inverse relationship between malaria severity and nitric oxide production/nitric oxide synthase type 2 expression. J Exp Med. 1996; 184: 557–567. pmid:8760809 doi: 10.1084/jem.184.2.557
[37]  Magez S, Radwanska M, Beschin A, Sekikawa K, De Baetselier P Tumor necrosis factor alpha is a key mediator in the regulation of experimental Trypanosoma brucei infections. Infect Immun. 1999; 67: 3128–3132. pmid:10338530 doi: 10.1016/s1383-5769(98)80266-3
[38]  Okomo-Assoumou MC, Daulouede S, Lemesre JL, N'Zila-Mouanda A, Vincendeau P Correlation of high serum levels of tumor necrosis factor-alpha with disease severity in human African trypanosomiasis. Am J Trop Med Hyg. 1995; 53: 539–543. pmid:7485714
[39]  Guilliams M, Movahedi K, Bosschaerts T, VandenDriessche T, Chuah MK, Herin M, et al. IL-10 dampens TNF/inducible nitric oxide synthase-producing dendritic cell-mediated pathogenicity during parasitic infection. J Immunol. 2009; 182: 1107–1118. pmid:19124754 doi: 10.4049/jimmunol.182.2.1107
[40]  Hatano E, Bennett BL, Manning AM, Qian T, Lemasters JJ, Brenner DA NF-kappaB stimulates inducible nitric oxide synthase to protect mouse hepatocytes from TNF-alpha- and Fas-mediated apoptosis. Gastroenterology. 2001; 120: 1251–1262. pmid:11266388 doi: 10.1053/gast.2001.23239
[41]  Florquin S, Amraoui Z, Dubois C, Decuyper J, Goldman M The protective role of endogenously synthesized nitric oxide in staphylococcal enterotoxin B-induced shock in mice. J Exp Med. 1994; 180: 1153–1158. pmid:7520469 doi: 10.1084/jem.180.3.1153
[42]  Sha Y, Marshall HE S-nitrosylation in the regulation of gene transcription. Biochim Biophys Acta. 2012; 1820: 701–711. doi: 10.1016/j.bbagen.2011.05.008. pmid:21640163
[43]  Kelleher ZT, Matsumoto A, Stamler JS, Marshall HE NOS2 regulation of NF-kappaB by S-nitrosylation of p65. J Biol Chem. 2007; 282: 30667–30672. pmid:17720813 doi: 10.1074/jbc.m705929200
[44]  Marshall HE, Stamler JS Inhibition of NF-kappa B by S-nitrosylation. Biochemistry. 2001; 40: 1688–1693. pmid:11327828 doi: 10.1021/bi002239y
[45]  Paludan SR, Ellermann-Eriksen S, Kruys V, Mogensen SC Expression of TNF-alpha by herpes simplex virus-infected macrophages is regulated by a dual mechanism: transcriptional regulation by NF-kappa B and activating transcription factor 2/Jun and translational regulation through the AU-rich region of the 3' untranslated region. J Immunol. 2001; 167: 2202–2208. pmid:11490006 doi: 10.4049/jimmunol.167.4.2202
[46]  Jespersen C, Doller A, Akool el S, Bachmann M, Muller R, Gutwein P, et al. Molecular mechanisms of nitric oxide-dependent inhibition of TPA-induced matrix metalloproteinase-9 (MMP-9) in MCF-7 cells. J Cell Physiol. 2009; 219: 276–287. doi: 10.1002/jcp.21658. pmid:19130490
[47]  Into T, Inomata M, Nakashima M, Shibata K, Hacker H, Matsushita K Regulation of MyD88-dependent signaling events by S nitrosylation retards toll-like receptor signal transduction and initiation of acute-phase immune responses. Mol Cell Biol. 2008; 28: 1338–1347. pmid:18086890 doi: 10.1128/mcb.01412-07
[48]  Lu G, Zhang R, Geng S, Peng L, Jayaraman P, Chen C, et al. Myeloid cell-derived inducible nitric oxide synthase suppresses M1 macrophage polarization. Nat Commun. 2015; 6: 6676. doi: 10.1038/ncomms7676. pmid:25813085
[49]  Han J, Lee JD, Bibbs L, Ulevitch RJ A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science. 1994; 265: 808–811. pmid:7914033 doi: 10.1126/science.7914033
[50]  Sorokin L The impact of the extracellular matrix on inflammation. Nat Rev Immunol. 2010; 10: 712–723. doi: 10.1038/nri2852. pmid:20865019
[51]  Yong VW, Wells J, Giuliani F, Casha S, Power C, Metz LM The promise of minocycline in neurology. Lancet Neurol. 2004; 3: 744–751. pmid:15556807 doi: 10.1016/s1474-4422(04)00937-8
[52]  Niedbala W, Cai B, Liew FY Role of nitric oxide in the regulation of T cell functions. Ann Rheum Dis. 2006; 65 Suppl 3: iii37–40. pmid:17038470 doi: 10.1136/ard.2006.058446
[53]  Hart TW Some observations concerning the S-nitroso and S-phenylsulphonyl derivatives of l-cysteine and glutathione. Tetrahedron Lett. 1985; 26: 2014. doi: 10.1016/s0040-4039(00)98368-0
[54]  Rothfuchs AG, Gigliotti D, Palmblad K, Andersson U, Wigzell H, Rottenberg ME IFN-alpha beta-dependent, IFN-gamma secretion by bone marrow-derived macrophages controls an intracellular bacterial infection. Journal of immunology. 2001; 167: 6453–6461. doi: 10.4049/jimmunol.167.11.6453
[55]  Carow B, Qun Ye X, Gavier-Widen D, Bhuju S, Oehlmann W, Singh M, et al. Silencing Suppressor of Cytokine Signaling-1 (SOCS1) in Macrophages Improves Mycobacterium tuberculosis Control in an Interferon-{gamma} (IFN-{gamma})-dependent Manner. The Journal of biological chemistry. 2011; 286: 26873–26887. doi: 10.1074/jbc.M111.238287. pmid:21622562
[56]  Vainchtein ID, Vinet J, Brouwer N, Brendecke S, Biagini G, Biber K, et al. In acute experimental autoimmune encephalomyelitis, infiltrating macrophages are immune activated, whereas microglia remain immune suppressed. Glia. 2014; 62: 1724–1735. doi: 10.1002/glia.22711. pmid:24953459
[57]  Saria A, Lundberg JM Evans blue fluorescence: quantitative and morphological evaluation of vascular permeability in animal tissues. J Neurosci Methods. 1983; 8: 41–49. pmid:6876872 doi: 10.1016/0165-0270(83)90050-x
[58]  Verdon CP, Burton BA, Prior RL Sample pretreatment with nitrate reductase and glucose-6-phosphate dehydrogenase quantitatively reduces nitrate while avoiding interference by NADP+ when the Griess reaction is used to assay for nitrite. Anal Biochem. 1995; 224: 502–508. pmid:7733451 doi: 10.1006/abio.1995.1079
[59]  Forrester MT, Foster MW, Benhar M, Stamler JS Detection of protein S-nitrosylation with the biotin-switch technique. Free Radic Biol Med. 2009; 46: 119–126. doi: 10.1016/j.freeradbiomed.2008.09.034. pmid:18977293
[60]  Peters NC, Pagan AJ, Lawyer PG, Hand TW, Henrique Roma E, Stamper LW, et al. Chronic parasitic infection maintains high frequencies of short-lived Ly6C+CD4+ effector T cells that are required for protection against re-infection. PLoS Pathog. 2014; 10: e1004538. doi: 10.1371/journal.ppat.1004538. pmid:25473946

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133