全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling

DOI: 10.1371/journal.ppat.1005473

Full-Text   Cite this paper   Add to My Lib

Abstract:

Members of the family Coronaviridae have the largest genomes of all RNA viruses, typically in the region of 30 kilobases. Several coronaviruses, such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV), are of medical importance, with high mortality rates and, in the case of SARS-CoV, significant pandemic potential. Other coronaviruses, such as Porcine epidemic diarrhea virus and Avian coronavirus, are important livestock pathogens. Ribosome profiling is a technique which exploits the capacity of the translating ribosome to protect around 30 nucleotides of mRNA from ribonuclease digestion. Ribosome-protected mRNA fragments are purified, subjected to deep sequencing and mapped back to the transcriptome to give a global “snap-shot” of translation. Parallel RNA sequencing allows normalization by transcript abundance. Here we apply ribosome profiling to cells infected with Murine coronavirus, mouse hepatitis virus, strain A59 (MHV-A59), a model coronavirus in the same genus as SARS-CoV and MERS-CoV. The data obtained allowed us to study the kinetics of virus transcription and translation with exquisite precision. We studied the timecourse of positive and negative-sense genomic and subgenomic viral RNA production and the relative translation efficiencies of the different virus ORFs. Virus mRNAs were not found to be translated more efficiently than host mRNAs; rather, virus translation dominates host translation at later time points due to high levels of virus transcripts. Triplet phasing of the profiling data allowed precise determination of translated reading frames and revealed several translated short open reading frames upstream of, or embedded within, known virus protein-coding regions. Ribosome pause sites were identified in the virus replicase polyprotein pp1a ORF and investigated experimentally. Contrary to expectations, ribosomes were not found to pause at the ribosomal frameshift site. To our knowledge this is the first application of ribosome profiling to an RNA virus.

References

[1]  Han HJ, Wen HL, Zhou CM, Chen FF, Luo LM, Liu JW, Yu XJ (2015) Bats as reservoirs of severe emerging infectious diseases. Virus Res 205: 1–6. doi: 10.1016/j.virusres.2015.05.006. pmid:25997928
[2]  Chan JF, Lau SK, To KK, Cheng VC, Woo PC, Yuen KY (2015) Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease. Clin Microbiol Rev 28: 465–522. doi: 10.1128/CMR.00102-14. pmid:25810418
[3]  Corman VM, Baldwin HJ, Fumie Tateno A, Melim Zerbinati R, Annan A, Owusu M, Nkrumah EE, Maganga GD, Oppong S, Adu-Sarkodie Y, Vallo P, da Silva Filho LV, Leroy EM, Thiel V, van der Hoek L, Poon LL, Tschapka M, Drosten C, Drexler JF (2015) Evidence for an ancestral association of human coronavirus 229E with bats. J Virol 89: 11858–11870. doi: 10.1128/JVI.01755-15. pmid:26378164
[4]  Brierley I, Boursnell ME, Binns MM, Bilimoria B, Blok VC, Brown TD, Inglis SC (1987) An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV. EMBO J 6: 3779–3785. pmid:3428275
[5]  Bredenbeek PJ, Pachuk CJ, Noten AF, Charité J, Luytjes W, Weiss SR, Spaan WJ (1990) The primary structure and expression of the second open reading frame of the polymerase gene of the coronavirus MHV-A59; a highly conserved polymerase is expressed by an efficient ribosomal frameshifting mechanism. Nucleic Acids Res 18: 1825–32. pmid:2159623 doi: 10.1093/nar/18.7.1825
[6]  Sawicki SG, Sawicki DL, Siddell SG (2007) A contemporary view of coronavirus transcription. J Virol 81: 20–29. pmid:16928755 doi: 10.1128/jvi.01358-06
[7]  Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324: 218–223. doi: 10.1126/science.1168978. pmid:19213877
[8]  Ingolia NT, Lareau LF, Weissman JS (2011) Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147: 789–802. doi: 10.1016/j.cell.2011.10.002. pmid:22056041
[9]  Ingolia NT (2014) Ribosome profiling: new views of translation, from single codons to genome scale. Nat Rev Genet 15: 205–213. doi: 10.1038/nrg3645. pmid:24468696
[10]  Wolin SL, Walter P (1988) Ribosome pausing and stacking during translation of a eukaryotic mRNA. EMBO J 7: 3559–3569. pmid:2850168
[11]  Morris DR (2009) Ribosomal footprints on a transcriptome landscape. Genome Biol 10: 215. doi: 10.1186/gb-2009-10-4-215. pmid:19439030
[12]  Weiss RB, Atkins JF (2011) Molecular biology. Translation goes global. Science 334: 1509–1510. doi: 10.1126/science.1216974. pmid:22174241
[13]  Michel AM, Baranov PV (2013) Ribosome profiling: a Hi-Def monitor for protein synthesis at the genome-wide scale. Wiley Interdiscip Rev RNA 4: 473–490. doi: 10.1002/wrna.1172. pmid:23696005
[14]  Brar GA, Weissman JS (2015) Ribosome profiling reveals the what, when, where and how of protein synthesis. Nat Rev Mol Cell Biol 16: 651–664. doi: 10.1038/nrm4069. pmid:26465719
[15]  Jackson R, Standart N (2015) The awesome power of ribosome profiling. RNA 21: 652–654. doi: 10.1261/rna.049908.115. pmid:25780177
[16]  Chung BY, Hardcastle TJ, Jones JD, Irigoyen N, Firth AE, Baulcombe DC, Brierley I (2015) The use of duplex-specific nuclease in ribosome profiling and a user-friendly software package for Ribo-seq data analysis. RNA 21: 1731–1745. doi: 10.1261/rna.052548.115. pmid:26286745
[17]  Stern-Ginossar N, Weisburd B, Michalski A, Le VT, Hein MY, Huang SX, Ma M, Shen B, Qian SB, Hengel H, Mann M, Ingolia NT, Weissman JS (2012) Decoding human cytomegalovirus. Science 338: 1088–1093. doi: 10.1126/science.1227919. pmid:23180859
[18]  Tirosh O, Cohen Y, Shitrit A, Shani O, Le-Trilling VT, Trilling M, Friedlander G, Tanenbaum M, Stern-Ginossar N (2015) The transcription and translation landscapes during human cytomegalovirus infection reveal novel host-pathogen interactions. PLoS Pathog 11: e1005288. doi: 10.1371/journal.ppat.1005288. pmid:26599541
[19]  Arias C, Weisburd B, Stern-Ginossar N, Mercier A, Madrid AS, Bellare P, Holdorf M, Weissman JS, Ganem D (2014) KSHV 2.0: a comprehensive annotation of the Kaposi's sarcoma-associated herpesvirus genome using next-generation sequencing reveals novel genomic and functional features. PLoS Pathog 10: e1003847. doi: 10.1371/journal.ppat.1003847. pmid:24453964
[20]  Rutkowski AJ, Erhard F, L'Hernault A, Bonfert T, Schilhabel M, Crump C, Rosenstiel P, Efstathiou S, Zimmer R, Friedel CC, D?lken L (2015) Widespread disruption of host transcription termination in HSV-1 infection. Nat Commun 6: 7126. doi: 10.1038/ncomms8126. pmid:25989971
[21]  Yang Z, Cao S, Martens CA, Porcella SF, Xie Z, Ma M, Shen B, Moss B (2015) Deciphering poxvirus gene expression by RNA sequencing and ribosome profiling. J Virol 89: 6874–6886. doi: 10.1128/JVI.00528-15. pmid:25903347
[22]  Liu X, Jiang H, Gu Z, Roberts JW (2013) High-resolution view of bacteriophage lambda gene expression by ribosome profiling. Proc Natl Acad Sci U S A 110: 11928–11933. doi: 10.1073/pnas.1309739110. pmid:23812753
[23]  Sawicki SG, Sawicki DL (1998) A new model for coronavirus transcription. Adv Exp Med Biol 440: 215–219. pmid:9782283 doi: 10.1007/978-1-4615-5331-1_26
[24]  Han Y, Gao X, Liu B, Wan J, Zhang X, Qian SB (2014) Ribosome profiling reveals sequence-independent post-initiation pausing as a signature of translation. Cell Res 24: 842–851. doi: 10.1038/cr.2014.74. pmid:24903108
[25]  Jukes TH (1996) On the prevalence of certain codons ("RNY") in genes for proteins. J Mol Evol 42: 377–381. pmid:8642606 doi: 10.1007/bf02498631
[26]  Gerashchenko MV, Lobanov AV, Gladyshev VN (2012) Genome-wide ribosome profiling reveals complex translational regulation in response to oxidative stress. Proc Natl Acad Sci U S A 109: 17394–17399. doi: 10.1073/pnas.1120799109. pmid:23045643
[27]  Shalgi R, Hurt JA, Krykbaeva I, Taipale M, Lindquist S, Burge CB (2013) Widespread regulation of translation by elongation pausing in heat shock. Mol Cell 49: 439–452. doi: 10.1016/j.molcel.2012.11.028. pmid:23290915
[28]  Liu B, Han Y, Qian SB (2013b) Cotranslational response to proteotoxic stress by elongation pausing of ribosomes. Mol Cell 49: 453–463. doi: 10.1016/j.molcel.2012.12.001
[29]  Ingolia NT, Brar GA, Stern-Ginossar N, Harris MS, Talhouarne GJ, Jackson SE, Wills MR, Weissman JS (2014) Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. Cell Rep 8: 1365–1379. doi: 10.1016/j.celrep.2014.07.045. pmid:25159147
[30]  Guydosh NR, Green R (2014) Dom34 rescues ribosomes in 3′ untranslated regions. Cell 156: 950–962. doi: 10.1016/j.cell.2014.02.006. pmid:24581494
[31]  Young DJ, Guydosh NR, Zhang F, Hinnebusch AG, Green R (2015) Rli1/ABCE1 recycles terminating ribosomes and controls translation reinitiation in 3′UTRs in vivo. Cell 162: 872–884. doi: 10.1016/j.cell.2015.07.041. pmid:26276635
[32]  Miettinen TP, Bj?rklund M (2015) Modified ribosome profiling reveals high abundance of ribosome protected mRNA fragments derived from 3' untranslated regions. Nucleic Acids Res 43: 1019–1034. doi: 10.1093/nar/gku1310. pmid:25550424
[33]  Sawicki SG, Sawicki DL (1986) Coronavirus minus-strand RNA synthesis and effect of cycloheximide on coronavirus RNA synthesis. J Virol 57: 328–334. pmid:2867230 doi: 10.1016/0042-6822(86)90157-1
[34]  Jendrach M, Thiel V, Siddell S (1999) Characterization of an internal ribosome entry site within mRNA 5 of murine hepatitis virus. Arch Virol 144: 921–933. pmid:10416375 doi: 10.1007/s007050050556
[35]  Skinner MA, Siddell SG (1985) Coding sequence of coronavirus MHV-JHM mRNA 4. J Gen Virol 66: 593–596. pmid:3973564 doi: 10.1099/0022-1317-66-3-593
[36]  Budzilowicz CJ, Wilczynski SP, Weiss SR (1985) Three intergenic regions of coronavirus mouse hepatitis virus strain A59 genome RNA contain a common nucleotide sequence that is homologous to the 3' end of the viral mRNA leader sequence. J Virol 53: 834–840. pmid:2983094
[37]  Shieh CK, Soe LH, Makino S, Chang MF, Stohlman SA, Lai MM (1987) The 5'-end sequence of the murine coronavirus genome: implications for multiple fusion sites in leader-primed transcription. Virology 156: 321–330. pmid:3027981 doi: 10.1016/0042-6822(87)90412-0
[38]  Shieh CK, Lee HJ, Yokomori K, La Monica N, Makino S, Lai MM (1989) Identification of a new transcriptional initiation site and the corresponding functional gene 2b in the murine coronavirus RNA genome. J Virol 63: 3729–3736. pmid:2547994
[39]  Makino S, Soe LH, Shieh CK, Lai MM (1988) Discontinuous transcription generates heterogeneity at the leader fusion sites of coronavirus mRNAs. J Virol 62: 3870–3873. pmid:2843681
[40]  La Monica N, Yokomori K, Lai MM (1992) Coronavirus mRNA synthesis: identification of novel transcription initiation signals which are differentially regulated by different leader sequences. Virology 188: 402–407. pmid:1566582 doi: 10.1016/0042-6822(92)90774-j
[41]  Joo M, Makino S (1992) Mutagenic analysis of the coronavirus intergenic consensus sequence. J Virol 66: 6330–6337. pmid:1383562
[42]  Yokomori K, Banner LR, Lai MM (1991) Heterogeneity of gene expression of the hemagglutinin-esterase (HE) protein of murine coronaviruses. Virology 183: 647–657. pmid:1649505 doi: 10.1016/0042-6822(91)90994-m
[43]  Bos EC, Luyties W, van der Meulen HV, Koerten HK, Spaan WJ (1996) The production of recombinant infectious DI-particles of a murine coronavirus in the absence of helper virus. Virology 218: 52–60. pmid:8615041 doi: 10.1006/viro.1996.0165
[44]  Makino S, Shieh CK, Keck JG, Lai MM (1988) Defective-interfering particles of murine coronavirus: mechanism of synthesis of defective viral RNAs. Virology 163: 104–111. pmid:2831651 doi: 10.1016/0042-6822(88)90237-1
[45]  Brierley I, Digard P, Inglis SC (1989) Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell 57: 537–547. pmid:2720781 doi: 10.1016/0092-8674(89)90124-4
[46]  Plant EP, Pérez-Alvarado GC, Jacobs JL, Mukhopadhyay B, Hennig M, Dinman JD (2005) A three-stemmed mRNA pseudoknot in the SARS coronavirus frameshift signal. PLoS Biol 3: e172. pmid:15884978 doi: 10.1371/journal.pbio.0030172
[47]  Imbert I, Guillemot JC, Bourhis JM, Bussetta C, Coutard B, Egloff MP, Ferron F, Gorbalenya AE, Canard B (2006) A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus. EMBO J 25: 4933–4942. pmid:17024178 doi: 10.1038/sj.emboj.7601368
[48]  Plant EP, Rakauskaite R, Taylor DR, Dinman JD (2010) Achieving a golden mean: mechanisms by which coronaviruses ensure synthesis of the correct stoichiometric ratios of viral proteins. J Virol 84: 4330–4340. doi: 10.1128/JVI.02480-09. pmid:20164235
[49]  Herold J, Siddell SG (1993) An ‘elaborated’ pseudoknot is required for high frequency frameshifting during translation of HCV 229E polymerase mRNA. Nucleic Acids Res 21: 5838–5842. pmid:8290341 doi: 10.1093/nar/21.25.5838
[50]  Marczinke B, Hagervall T, Brierley I (2000) The Q-base of asparaginyl-tRNA is dispensable for efficient ?1 ribosomal frameshifting in eukaryotes. J Mol Biol 295: 179–191. pmid:10623518 doi: 10.1006/jmbi.1999.3361
[51]  Baranov PV, Henderson CM, Anderson CB, Gesteland RF, Atkins JF, Howard MT (2005) Programmed ribosomal frameshifting in decoding the SARS-CoV genome. Virology 332: 498–510. pmid:15680415 doi: 10.1016/j.virol.2004.11.038
[52]  Grentzmann G, Ingram JA, Kelly PJ, Gesteland RF, Atkins JF (1998) A dual-luciferase reporter system for studying recoding signals. RNA 4: 479–486. pmid:9630253
[53]  Fixsen SM, Howard MT (2010) Processive selenocysteine incorporation during synthesis of eukaryotic selenoproteins. J Mol Biol 399: 385–396. doi: 10.1016/j.jmb.2010.04.033. pmid:20417644
[54]  Girnary R, King L, Robinson L, Elston R, Brierley I (2007) Structure-function analysis of the ribosomal frameshifting signal of two human immunodeficiency virus type 1 isolates with increased resistance to viral protease inhibitors. J Gen Virol 88: 226–235. pmid:17170455 doi: 10.1099/vir.0.82064-0
[55]  Lin Z, Gilbert RJ, Brierley I (2012) Spacer-length dependence of programmed ?1 or ?2 ribosomal frameshifting on a U6A heptamer supports a role for messenger RNA (mRNA) tension in frameshifting. Nucleic Acids Res 40: 8674–8689. pmid:22743270 doi: 10.1093/nar/gks629
[56]  Farabaugh PJ (2000) Translational frameshifting: implications for the mechanism of translational frame maintenance. Prog Nucleic Acid Res Mol Biol 64: 131–170. pmid:10697409 doi: 10.1016/s0079-6603(00)64004-7
[57]  Kontos H, Napthine S, Brierley I (2001) Ribosomal pausing at a frameshifter RNA pseudoknot is sensitive to reading phase but shows little correlation with frameshift efficiency. Mol Cell Biol 21: 8657–8670. pmid:11713298 doi: 10.1128/mcb.21.24.8657-8670.2001
[58]  Brierley I, Gilbert RJC, Pennell S (2010) Pseudoknot-dependent ?1 ribosomal frameshifting: structures, mechanisms and models. In Recoding: expansion of decoding rules enriches gene expression, Atkins JF and Gesteland RF eds. (Springer), pp 149–174.
[59]  Tu C, Tzeng TH, Bruenn JA (1992) Ribosomal movement impeded at a pseudoknot required for frameshifting. Proc Natl Acad Sci U S A 89: 8636–8640. pmid:1528874 doi: 10.1073/pnas.89.18.8636
[60]  Somogyi P, Jenner AJ, Brierley I, Inglis SC (1993) Ribosomal pausing during translation of an RNA pseudoknot. Mol Cell Biol 13: 6931–6940. pmid:8413285 doi: 10.1128/mcb.13.11.6931
[61]  Lopinski JD, Dinman JD, Bruenn JA (2000) Kinetics of ribosomal pausing during programmed ?1 translational frameshifting. Mol Cell Biol 20: 1095–1103. pmid:10648594 doi: 10.1128/mcb.20.4.1095-1103.2000
[62]  Caliskan N, Katunin VI, Belardinelli R, Peske F, Rodnina MV (2014) Programmed ?1 frameshifting by kinetic partitioning during impeded translocation. Cell 157: 1619–1631. 61. doi: 10.1016/j.cell.2014.04.041. pmid:24949973
[63]  Chen J, Petrov A, Johansson M, Tsai A, O’Leary SE, Puglisi JD (2014) Dynamic pathways of ?1 translational frameshifting. Nature 512: 328–332. doi: 10.1038/nature13428. pmid:24919156
[64]  Kim HK, Liu F, Fei J, Bustamante C, Gonzalez RL Jr, Tinoco I Jr (2014) A frameshifting stimulatory stem loop destabilizes the hybrid state and impedes ribosomal translocation. Proc Natl Acad Sci U S A 111: 5538–5543. doi: 10.1073/pnas.1403457111. pmid:24706807
[65]  Li GW, Oh E, Weissman JS (2012) The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria. Nature 484: 538–541. doi: 10.1038/nature10965. pmid:22456704
[66]  O'Connor PB, Li GW, Weissman JS, Atkins JF, Baranov PV (2013) rRNA:mRNA pairing alters the length and the symmetry of mRNA-protected fragments in ribosome profiling experiments. Bioinformatics 29: 1488–1491. doi: 10.1093/bioinformatics/btt184. pmid:23603333
[67]  Tenson T, Ehrenberg M (2002) Regulatory nascent peptides in the ribosomal tunnel. Cell 108: 591–594. pmid:11893330 doi: 10.1016/s0092-8674(02)00669-4
[68]  Ito K, Chiba S (2013) Arrest peptides: cis-acting modulators of translation. Annu Rev Biochem 82: 171–202. doi: 10.1146/annurev-biochem-080211-105026. pmid:23746254
[69]  Knoops K, Kikkert M, Worm SH, Zevenhoven-Dobbe JC, van der Meer Y, Koster AJ, Mommaas AM, Snijder EJ (2008) SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol 6: e226. doi: 10.1371/journal.pbio.0060226. pmid:18798692
[70]  V'kovski P, Al-Mulla H, Thiel V, Neuman BW (2015) New insights on the role of paired membrane structures in coronavirus replication. Virus Res 202: 33–40. doi: 10.1016/j.virusres.2014.12.021. pmid:25550072
[71]  Gosert R, Kanjanahaluethai A, Egger D, Bienz K, Baker SC (2002) RNA replication of mouse hepatitis virus takes place at double-membrane vesicles. J Virol 76: 3697–3708. pmid:11907209 doi: 10.1128/jvi.76.8.3697-3708.2002
[72]  Clementz MA, Kanjanahaluethai A, O’Brien TE, Baker SC (2008) Mutation in murine coronavirus replication protein nsp4 alters assembly of double membrane vesicles. Virology 375: 118–129. doi: 10.1016/j.virol.2008.01.018. pmid:18295294
[73]  Oostra M, Hagemeijer MC, van Gent M, Bekker CP, te Lintelo EG, Rottier PJ, de Haan CA (2008) Topology and membrane anchoring of the coronavirus replication complex: not all hydrophobic domains of nsp3 and nsp6 are membrane spanning. J Virol 82: 12392–12405 doi: 10.1128/JVI.01219-08. pmid:18842706
[74]  Baliji S, Cammer SA, Sobral B, Baker SC (2009) Detection of non-structural protein 6 in murine coronavirus-infected cells and analysis of the transmembrane topology by using bioinformatics and molecular approaches. J Virol 83: 6957–6962. doi: 10.1128/JVI.00254-09. pmid:19386712
[75]  Angelini MM, Akhlaghpour M, Neuman BW, Buchmeier MJ (2013) Severe acute respiratory syndrome coronavirus non-structural proteins 3, 4, and 6 induce double-membrane vesicles. MBio 4: e00524–13. doi: 10.1128/mbio.00524-13
[76]  Chen Y, Savinov SN, Mielech AM, Cao T, Baker SC, Mesecar AD (2015) X-ray structural and functional studies of the three tandemly linked domains of non-structural protein 3 (nsp3) from murine hepatitis virus reveal conserved functions. J Biol Chem 290: 25293–25306. doi: 10.1074/jbc.M115.662130. pmid:26296883
[77]  Charneski CA, Hurst LD (2013) Positively charged residues are the major determinants of ribosomal velocity. PLoS Biol 11: e1001508. doi: 10.1371/journal.pbio.1001508. pmid:23554576
[78]  Peabody DS (1989) Translation initiation at non-AUG triplets in mammalian cells. J Biol Chem 264: 5031–5035. pmid:2538469
[79]  Kozak M (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44: 283–292. pmid:3943125 doi: 10.1016/0092-8674(86)90762-2
[80]  Wu HY, Guan BJ, Su YP, Fan YH, Brian DA (2014) Reselection of a genomic upstream open reading frame in mouse hepatitis coronavirus 5'-untranslated-region mutants. J Virol 88: 846–858. doi: 10.1128/JVI.02831-13. pmid:24173235
[81]  Calvo SE, Pagliarini DJ, Mootha VK (2009) Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc Natl Acad Sci U S A 106: 7507–7512. doi: 10.1073/pnas.0810916106. pmid:19372376
[82]  Somers J, P?yry T, Willis AE (2013) A perspective on mammalian upstream open reading frame function. Int J Biochem Cell Biol 45: 1690–1700. doi: 10.1016/j.biocel.2013.04.020. pmid:23624144
[83]  Pavlov MY, Watts RE, Tan Z, Cornish VW, Ehrenberg M, Forster AC (2009) Slow peptide bond formation by proline and other N-alkylamino acids in translation. Proc Natl Acad Sci U S A 106: 50–54. doi: 10.1073/pnas.0809211106. pmid:19104062
[84]  Artieri CG, Fraser HB (2014) Accounting for biases in riboprofiling data indicates a major role for proline in stalling translation. Genome Res 24: 2011–2021. doi: 10.1101/gr.175893.114. pmid:25294246
[85]  Luytjes W, Bredenbeek PJ, Noten AF, Horzinek MC, Spaan WJ (1988) Sequence of mouse hepatitis virus A59 mRNA 2: indications for RNA recombination between coronaviruses and influenza C virus. Virology 166: 415–422. pmid:2845655 doi: 10.1016/0042-6822(88)90512-0
[86]  Weiss SR, Zoltick PW, Leibowitz JL (1993) The ns 4 gene of mouse hepatitis virus (MHV), strain A 59 contains two ORFs and thus differs from ns 4 of the JHM and S strains. Arch Virol 129: 301–309. pmid:8385918 doi: 10.1007/bf01316905
[87]  Jackson RJ, Hellen CU, Pestova TV (2012) Termination and post-termination events in eukaryotic translation. Adv Protein Chem Struct Biol 86: 45–93. doi: 10.1016/B978-0-12-386497-0.00002-5. pmid:22243581
[88]  Skinner MA, Ebner D, Siddell SG (1985) Coronavirus MHV-JHM mRNA 5 has a sequence arrangement which potentially allows translation of a second, downstream open reading frame. J Gen Virol 66: 581–592. pmid:3838338 doi: 10.1099/0022-1317-66-3-581
[89]  Hofmann MA, Chang RY, Ku S, Brian DA (1993) Leader-mRNA junction sequences are unique for each subgenomic mRNA species in the bovine coronavirus and remain so throughout persistent infection. Virology 196: 163–171. pmid:8356793 doi: 10.1006/viro.1993.1464
[90]  Zhang J, Guy JS, Snijder EJ, Denniston DA, Timoney PJ, Balasuriya UB (2007) Genomic characterization of equine coronavirus. Virology 369: 92–104. pmid:17706262 doi: 10.1016/j.virol.2007.06.035
[91]  Thiel V, Siddell SG (1994) Internal ribosome entry in the coding region of murine hepatitis virus mRNA 5. J Gen Virol 75: 3041–3046. pmid:7964613 doi: 10.1099/0022-1317-75-11-3041
[92]  Senanayake SD, Hofmann MA, Maki JL, Brian DA (1992) The nucleocapsid protein gene of bovine coronavirus is bicistronic. J Virol 66: 5277–5283. pmid:1501275
[93]  Fischer F, Peng D, Hingley ST, Weiss SR, Masters PS (1997) The internal open reading frame within the nucleocapsid gene of mouse hepatitis virus encodes a structural protein that is not essential for viral replication. J Virol 71: 996–1003. pmid:8995618
[94]  Sawicki SG, Sawicki DL (1990) Coronavirus transcription: subgenomic mouse hepatitis virus replicative intermediates function in RNA synthesis. J Virol 64: 1050–1056. pmid:2154591
[95]  Sawicki SG, Sawicki DL (2005) Coronavirus transcription: a perspective. Curr Top Microbiol Immunol 287: 31–55. pmid:15609508 doi: 10.1007/3-540-26765-4_2
[96]  Sawicki D, Wang T, Sawicki S (2001) The RNA structures engaged in replication and transcription of the A59 strain of mouse hepatitis virus. J Gen Virol 82: 385–396. pmid:11161278 doi: 10.1099/0022-1317-82-2-385
[97]  Leibowitz JL, Wilhelmsen KC, Bond CW (1981) The virus-specific intracellular RNA species of two murine coronaviruses: MHV-A59 and MHV-JHM. Virology 114: 39–51. pmid:7281517 doi: 10.1016/0042-6822(81)90250-6
[98]  Narayanan K, Ramirez SI, Lokugamage KG, Makino S (2015) Coronavirus non-structural protein 1: common and distinct functions in the regulation of host and viral gene expression. Virus Research 202: 89–100. doi: 10.1016/j.virusres.2014.11.019. pmid:25432065
[99]  Zhao X, Shaw K, Cavanagh D (1993) Presence of subgenomic mRNAs in virions of coronavirus IBV. Virology 196: 172–178. pmid:8395112 doi: 10.1006/viro.1993.1465
[100]  Escors D, Izeta A, Capiscol C, Enjuanes L (2003) Transmissible gastroenteritis coronavirus packaging signal is located at the 5′ end of the virus genome. J Virol 77: 7890–7902. pmid:12829829 doi: 10.1128/jvi.77.14.7890-7902.2003
[101]  Kuo L, Masters PS (2013) Functional analysis of the murine coronavirus genomic RNA packaging signal. J Virol 87: 5182–5192. doi: 10.1128/JVI.00100-13. pmid:23449786
[102]  Clarke BD, Roby JA, Slonchak A, Khromykh AA (2015) Functional non-coding RNAs derived from the flavivirus 3' untranslated region. Virus Res. 206: 53–61. doi: 10.1016/j.virusres.2015.01.026. pmid:25660582
[103]  Yang D, Liu P, Giedroc DP, Leibowitz J (2011) Mouse hepatitis virus stem-loop 4 functions as a spacer element required to drive subgenomic RNA synthesis. J Virol 85: 9199–9209. doi: 10.1128/JVI.05092-11. pmid:21715502
[104]  Venkatagopalan P, Daskalova SM, Lopez LA, Dolezal KA, Hogue BG (2015) Coronavirus envelope (E) protein remains at the site of assembly. Virology 478: 75–85. doi: 10.1016/j.virol.2015.02.005. pmid:25726972
[105]  Dana A, Tuller T (2012) Determinants of translation elongation speed and ribosomal profiling biases in mouse embryonic stem cells. PLoS Comput Biol 8: e1002755. doi: 10.1371/journal.pcbi.1002755. pmid:23133360
[106]  Pop C, Rouskin S, Ingolia NT, Han L, Phizicky EM, Weissman JS, Koller D (2014) Causal signals between codon bias, mRNA structure, and the efficiency of translation and elongation. Mol Syst Biol 10: 770. doi: 10.15252/msb.20145524. pmid:25538139
[107]  Del Campo C, Bartholom?us A, Fedyunin I, Ignatova Z (2015) Secondary structure across the bacterial transcriptome reveals versatile roles in mRNA regulation and function. PLoS Genet 11: e1005613. doi: 10.1371/journal.pgen.1005613. pmid:26495981
[108]  Neuman BW, Joseph JS, Saikatendu KS, Serrano P, Chatterjee A, Johnson MA, Liao L, Klaus JP, Yates JR 3rd, Wüthrich K, Stevens RC, Buchmeier MJ, Kuhn P (2008) Proteomics analysis unravels the functional repertoire of coronavirus nonstructural protein 3. J Virol 82: 5279–5294. doi: 10.1128/JVI.02631-07. pmid:18367524
[109]  Crombie T, Swaffield JC, Brown AJ (1992) Protein folding within the cell is influenced by controlled rates of polypeptide elongation. J Mol Biol 228: 7–12. pmid:1447795 doi: 10.1016/0022-2836(92)90486-4
[110]  Zhang G, Hubalewska M, Ignatova Z (2009) Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nat Struct Mol Biol 16: 274–280. doi: 10.1038/nsmb.1554. pmid:19198590
[111]  Han Y, David A, Liu B, Magadán JG, Bennink JR, Yewdell JW, Qian SB (2012) Monitoring cotranslational protein folding in mammalian cells at codon resolution. Proc Natl Acad Sci U S A 109: 12467–12472. doi: 10.1073/pnas.1208138109. pmid:22802618
[112]  Sturman LS, Takemoto KK (1972) Enhanced growth of a murine coronavirus in transformed mouse cells. Infect Immun 6: 501–507. pmid:4564284
[113]  Coley SE, Lavi E, Sawicki SG, Fu L, Schelle B, Karl N, Siddell SG, Thiel V (2005) Recombinant mouse hepatitis virus strain A59 from cloned, full-length cDNA replicates to high titers in vitro and is fully pathogenic in vivo. J Virol 79:3097–3106. pmid:15709029 doi: 10.1128/jvi.79.5.3097-3106.2005
[114]  Ingolia NT, Brar GA, Rouskin S, McGeachy AM, Weissman JS (2012) The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat Protoc 7: 1534–1550. doi: 10.1038/nprot.2012.086. pmid:22836135
[115]  Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466: 835–840. doi: 10.1038/nature09267. pmid:20703300
[116]  Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: R25. doi: 10.1186/gb-2009-10-3-r25. pmid:19261174
[117]  Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25: 1105–1111. doi: 10.1093/bioinformatics/btp120. pmid:19289445
[118]  Anders S, Pyl PT, Huber W (2015) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31: 166–169. doi: 10.1093/bioinformatics/btu638. pmid:25260700
[119]  Brierley I, Jenner AJ, Inglis SC (1992) Mutational analysis of the "slippery-sequence" component of a coronavirus ribosomal frameshifting signal. J Mol Biol 227: 463–479. pmid:1404364 doi: 10.1016/0022-2836(92)90901-u

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133