Minegishi Y, Saito M, Tsuchiya S, Tsuge I, Takada H, et al. (2007) Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature 448: 1058–1062. pmid:17676033 doi: 10.1038/nature06096
[5]
Holland SM, DeLeo FR, Elloumi HZ, Hsu AP, Uzel G, et al. (2007) STAT3 mutations in the hyper-IgE syndrome. N Engl J Med 357: 1608–1619. pmid:17881745 doi: 10.1056/nejmoa073687
[6]
van de Veerdonk FL, Plantinga TS, Hoischen A, Smeekens SP, Joosten LA, et al. (2011) STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N Engl J Med 365: 54–61. doi: 10.1056/NEJMoa1100102. pmid:21714643
[7]
Liu L, Okada S, Kong XF, Kreins AY, Cypowyj S, et al. (2011) Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med 208: 1635–1648. doi: 10.1084/jem.20110958. pmid:21727188
[8]
Soltesz B, Toth B, Shabashova N, Bondarenko A, Okada S, et al. (2013) New and recurrent gain-of-function STAT1 mutations in patients with chronic mucocutaneous candidiasis from Eastern and Central Europe. J Med Genet 50: 567–578. doi: 10.1136/jmedgenet-2013-101570. pmid:23709754
[9]
Sampaio EP, Hsu AP, Pechacek J, Bax HI, Dias DL, et al. (2013) Signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations and disseminated coccidioidomycosis and histoplasmosis. J Allergy Clin Immunol 131: 1624–1634. doi: 10.1016/j.jaci.2013.01.052. pmid:23541320
[10]
Wang X, Lin Z, Gao L, Wang A, Wan Z, et al. (2013) Exome sequencing reveals a signal transducer and activator of transcription 1 (STAT1) mutation in a child with recalcitrant cutaneous fusariosis. J Allergy Clin Immunol 131: 1242–1243. doi: 10.1016/j.jaci.2012.11.005. pmid:23245795
[11]
Kumar N, Hanks ME, Chandrasekaran P, Davis BC, Hsu AP, et al. (2014) Gain-of-function signal transducer and activator of transcription 1 (STAT1) mutation-related primary immunodeficiency is associated with disseminated mucormycosis. J Allergy Clin Immunol 134: 236–239. doi: 10.1016/j.jaci.2014.02.037. pmid:24709374
[12]
Lee PP, Mao H, Yang W, Chan KW, Ho MH, et al. (2014) Penicillium marneffei infection and impaired IFN-gamma immunity in humans with autosomal-dominant gain-of-phosphorylation STAT1 mutations. J Allergy Clin Immunol 133: 894–896 e895. doi: 10.1016/j.jaci.2013.08.051. pmid:24188975
[13]
Gu C, Wu L, Li X (2013) IL-17 family: cytokines, receptors and signaling. Cytokine 64: 477–485. doi: 10.1016/j.cyto.2013.07.022. pmid:24011563
[14]
Puel A, Cypowyj S, Bustamante J, Wright JF, Liu L, et al. (2011) Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332: 65–68. doi: 10.1126/science.1200439. pmid:21350122
[15]
Ling Y, Cypowyj S, Aytekin C, Galicchio M, Camcioglu Y, et al. (2015) Inherited IL-17RC deficiency in patients with chronic mucocutaneous candidiasis. J Exp Med 212: 619–631. doi: 10.1084/jem.20141065. pmid:25918342
[16]
Boisson B, Wang C, Pedergnana V, Wu L, Cypowyj S, et al. (2013) An ACT1 mutation selectively abolishes interleukin-17 responses in humans with chronic mucocutaneous candidiasis. Immunity 39: 676–686. doi: 10.1016/j.immuni.2013.09.002. pmid:24120361
[17]
Finnish-German AC (1997) An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat Genet 17: 399–403. pmid:9398840 doi: 10.1038/ng1297-399
[18]
Puel A, Doffinger R, Natividad A, Chrabieh M, Barcenas-Morales G, et al. (2010) Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J Exp Med 207: 291–297. doi: 10.1084/jem.20091983. pmid:20123958
[19]
Kisand K, Boe Wolff AS, Podkrajsek KT, Tserel L, Link M, et al. (2010) Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J Exp Med 207: 299–308. doi: 10.1084/jem.20091669. pmid:20123959
[20]
Segal BH, DeCarlo ES, Kwon-Chung KJ, Malech HL, Gallin JI, et al. (1998) Aspergillus nidulans infection in chronic granulomatous disease. Medicine (Baltimore) 77: 345–354. doi: 10.1097/00005792-199809000-00004
[21]
Clark RA, Malech HL, Gallin JI, Nunoi H, Volpp BD, et al. (1989) Genetic variants of chronic granulomatous disease: prevalence of deficiencies of two cytosolic components of the NADPH oxidase system. N Engl J Med 321: 647–652. pmid:2770793 doi: 10.1056/nejm198909073211005
[22]
Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87: 245–313. pmid:17237347 doi: 10.1152/physrev.00044.2005
[23]
de Luca A, Smeekens SP, Casagrande A, Iannitti R, Conway KL, et al. (2014) IL-1 receptor blockade restores autophagy and reduces inflammation in chronic granulomatous disease in mice and in humans. Proc Natl Acad Sci U S A 111: 3526–3531. doi: 10.1073/pnas.1322831111. pmid:24550444
[24]
Kyrmizi I, Gresnigt MS, Akoumianaki T, Samonis G, Sidiropoulos P, et al. (2013) Corticosteroids block autophagy protein recruitment in Aspergillus fumigatus phagosomes via targeting dectin-1/Syk kinase signaling. J Immunol 191: 1287–1299. doi: 10.4049/jimmunol.1300132. pmid:23817424
[25]
Martinez J, Malireddi RK, Lu Q, Cunha LD, Pelletier S, et al. (2015) Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat Cell Biol 17: 893–906. doi: 10.1038/ncb3192. pmid:26098576
[26]
Romani L (2011) Immunity to fungal infections. Nat Rev Immunol 11: 275–288. doi: 10.1038/nri2939. pmid:21394104
[27]
Glocker EO, Hennigs A, Nabavi M, Schaffer AA, Woellner C, et al. (2009) A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med 361: 1727–1735. doi: 10.1056/NEJMoa0810719. pmid:19864672
[28]
Drewniak A, Gazendam RP, Tool AT, van Houdt M, Jansen MH, et al. (2013) Invasive fungal infection and impaired neutrophil killing in human CARD9 deficiency. Blood 121: 2385–2392. doi: 10.1182/blood-2012-08-450551. pmid:23335372
[29]
Gavino C, Cotter A, Lichtenstein D, Lejtenyi D, Fortin C, et al. (2014) CARD9 deficiency and spontaneous central nervous system candidiasis: complete clinical remission with GM-CSF therapy. Clin Infect Dis 59: 81–84. doi: 10.1093/cid/ciu215. pmid:24704721
[30]
Lanternier F, Mahdaviani SA, Barbati E, Chaussade H, Koumar Y, et al. (2015) Inherited CARD9 deficiency in otherwise healthy children and adults with Candida species-induced meningoencephalitis, colitis, or both. J Allergy Clin Immunol 135: 1558–1568 e1552. doi: 10.1016/j.jaci.2014.12.1930. pmid:25702837
[31]
Lanternier F, Pathan S, Vincent QB, Liu L, Cypowyj S, et al. (2013) Deep dermatophytosis and inherited CARD9 deficiency. N Engl J Med 369: 1704–1714. doi: 10.1056/NEJMoa1208487. pmid:24131138
[32]
Wang X, Wang W, Lin Z, Wang X, Li T, et al. (2014) CARD9 mutations linked to subcutaneous phaeohyphomycosis and TH17 cell deficiencies. J Allergy Clin Immunol 133: 905–908 e903. doi: 10.1016/j.jaci.2013.09.033. pmid:24231284
[33]
Lanternier F, Barbati E, Meinzer U, Liu L, Pedergnana V, et al. (2015) Inherited CARD9 deficiency in 2 unrelated patients with invasive Exophiala infection. J Infect Dis 211: 1241–1250. doi: 10.1093/infdis/jiu412. pmid:25057046
[34]
Zheng J, van de Veerdonk FL, Crossland KL, Smeekens SP, Chan CM, et al. (2015) Gain-of-function STAT1 mutations impair STAT3 activity in patients with chronic mucocutaneous candidiasis (CMC). Eur J Immunol 45: 2834–46. doi: 10.1002/eji.201445344. pmid:26255980
[35]
Higgins E, Al Shehri T, McAleer MA, Conlon N, Feighery C, et al. (2015) Use of ruxolitinib to successfully treat chronic mucocutaneous candidiasis caused by gain-of-function signal transducer and activator of transcription 1 (STAT1) mutation. J Allergy Clin Immunol 135: 551–553. doi: 10.1016/j.jaci.2014.12.1867. pmid:25662309
[36]
Tang BS, Chan JF, Chen M, Tsang OT, Mok MY, et al. (2010) Disseminated penicilliosis, recurrent bacteremic nontyphoidal salmonellosis, and burkholderiosis associated with acquired immunodeficiency due to autoantibody against gamma interferon. Clin Vaccine Immunol 17: 1132–1138. doi: 10.1128/CVI.00053-10. pmid:20445006
[37]
Rosen LB, Freeman AF, Yang LM, Jutivorakool K, Olivier KN, et al. (2013) Anti-GM-CSF autoantibodies in patients with cryptococcal meningitis. J Immunol 190: 3959–3966. doi: 10.4049/jimmunol.1202526. pmid:23509356
[38]
Wildbaum G, Shahar E, Katz R, Karin N, Etzioni A, et al. (2013) Continuous G-CSF therapy for isolated chronic mucocutaneous candidiasis: complete clinical remission with restoration of IL-17 secretion. J Allergy Clin Immunol 132: 761–764. doi: 10.1016/j.jaci.2013.04.018. pmid:23791509
[39]
Smeekens SP, Ng A, Kumar V, Johnson MD, Plantinga TS, et al. (2013) Functional genomics identifies type I interferon pathway as central for host defense against Candida albicans. Nat Commun 4: 1342. doi: 10.1038/ncomms2343. pmid:23299892
[40]
Jaeger M, van der Lee R, Cheng SC, Johnson MD, Kumar V, et al. (2015) The RIG-I-like helicase receptor MDA5 (IFIH1) is involved in the host defense against Candida infections. Eur J Clin Microbiol Infect Dis 34: 963–974. doi: 10.1007/s10096-014-2309-2. pmid:25579795
[41]
Engelhardt KR, McGhee S, Winkler S, Sassi A, Woellner C, et al. (2009) Large deletions and point mutations involving the dedicator of cytokinesis 8 (DOCK8) in the autosomal-recessive form of hyper-IgE syndrome. J Allergy Clin Immunol 124: 1289–1302 e1284. doi: 10.1016/j.jaci.2009.10.038. pmid:20004785
[42]
Okada S, Markle JG, Deenick EK, Mele F, Averbuch D, et al. (2015) IMMUNODEFICIENCIES. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science 349: 606–613. doi: 10.1126/science.aaa4282. pmid:26160376
[43]
Fieschi C, Dupuis S, Catherinot E, Feinberg J, Bustamante J, et al. (2003) Low penetrance, broad resistance, and favorable outcome of interleukin 12 receptor beta1 deficiency: medical and immunological implications. J Exp Med 197: 527–535. pmid:12591909 doi: 10.1084/jem.20021769
[44]
Kreins AY, Ciancanelli MJ, Okada S, Kong XF, Ramirez-Alejo N, et al. (2015) Human TYK2 deficiency: Mycobacterial and viral infections without hyper-IgE syndrome. J Exp Med 212: 1641–62. doi: 10.1084/jem.20140280. pmid:26304966
[45]
Dupuis S, Dargemont C, Fieschi C, Thomassin N, Rosenzweig S, et al. (2001) Impairment of mycobacterial but not viral immunity by a germline human STAT1 mutation. Science 293: 300–303. pmid:11452125 doi: 10.1126/science.1061154