Developmental differentiation is a universal biological process that allows cells to adapt to different environments to perform specific functions. African trypanosomes progress through a tightly regulated life cycle in order to survive in different host environments when they shuttle between an insect vector and a vertebrate host. Transcriptomics has been useful to gain insight into RNA changes during stage transitions; however, RNA levels are only a moderate proxy for protein abundance in trypanosomes. We quantified 4270 protein groups during stage differentiation from the mammalian-infective to the insect form and provide classification for their expression profiles during development. Our label-free quantitative proteomics study revealed previously unknown components of the differentiation machinery that are involved in essential biological processes such as signaling, posttranslational protein modifications, trafficking and nuclear transport. Furthermore, guided by our proteomic survey, we identified the cause of the previously observed differentiation impairment in the histone methyltransferase DOT1B knock-out strain as it is required for accurate karyokinesis in the first cell division during differentiation. This epigenetic regulator is likely involved in essential chromatin restructuring during developmental differentiation, which might also be important for differentiation in higher eukaryotic cells. Our proteome dataset will serve as a resource for detailed investigations of cell differentiation to shed more light on the molecular mechanisms of this process in trypanosomes and other eukaryotes.
References
[1]
Fevre EM, Wissmann BV, Welburn SC, Lutumba P (2008) The burden of human African trypanosomiasis. PLoS Negl Trop Dis 2: e333. doi: 10.1371/journal.pntd.0000333. pmid:19104653
[2]
Matthews KR (2005) The developmental cell biology of Trypanosoma brucei. J Cell Sci 118: 283–290. pmid:15654017 doi: 10.1242/jcs.01649
[3]
Fenn K, Matthews KR (2007) The cell biology of Trypanosoma brucei differentiation. Curr Opin Microbiol 10: 539–546. pmid:17997129 doi: 10.1016/j.mib.2007.09.014
[4]
Vassella E, Reuner B, Yutzy B, Boshart M (1997) Differentiation of African trypanosomes is controlled by a density sensing mechanism which signals cell cycle arrest via the cAMP pathway. J Cell Sci 110 (Pt 21): 2661–2671. pmid:9427384
[5]
Batram C, Jones NG, Janzen CJ, Markert SM, Engstler M (2014) Expression site attenuation mechanistically links antigenic variation and development in Trypanosoma brucei. Elife 3: e02324. doi: 10.7554/eLife.02324. pmid:24844706
[6]
Szoor B, Dyer NA, Ruberto I, Acosta-Serrano A, Matthews KR (2013) Independent pathways can transduce the life-cycle differentiation signal in Trypanosoma brucei. PLoS Pathog 9: e1003689. doi: 10.1371/journal.ppat.1003689. pmid:24146622
[7]
Jones NG, Thomas EB, Brown E, Dickens NJ, Hammarton TC, et al. (2014) Regulators of Trypanosoma brucei Cell Cycle Progression and Differentiation Identified Using a Kinome-Wide RNAi Screen. PLoS Pathogens 10: e1003886. doi: 10.1371/journal.ppat.1003886. pmid:24453978
[8]
Mony BM, MacGregor P, Ivens A, Rojas F, Cowton A, et al. (2014) Genome-wide dissection of the quorum sensing signalling pathway in Trypanosoma brucei. Nature 505: 681–685. doi: 10.1038/nature12864. pmid:24336212
[9]
Kabani S, Fenn K, Ross A, Ivens A, Smith TK, et al. (2009) Genome-wide expression profiling of in vivo-derived bloodstream parasite stages and dynamic analysis of mRNA alterations during synchronous differentiation in Trypanosoma brucei. BMC Genomics 10: 427. doi: 10.1186/1471-2164-10-427. pmid:19747379
[10]
Queiroz R, Benz C, Fellenberg K, Hoheisel JD, Clayton C (2009) Transcriptome analysis of differentiating trypanosomes reveals the existence of multiple post-transcriptional regulons. BMC Genomics 10: 495. doi: 10.1186/1471-2164-10-495. pmid:19857263
[11]
Siegel TN, Gunasekera K, Cross GA, Ochsenreiter T (2011) Gene expression in Trypanosoma brucei: lessons from high-throughput RNA sequencing. Trends Parasitol 27: 434–441. doi: 10.1016/j.pt.2011.05.006. pmid:21737348
[12]
Erben ED, Fadda A, Lueong S, Hoheisel JD, Clayton C (2014) A genome-wide tethering screen reveals novel potential post-transcriptional regulators in Trypanosoma brucei. PLoS Pathog 10: e1004178. doi: 10.1371/journal.ppat.1004178. pmid:24945722
[13]
Vasquez JJ, Hon CC, Vanselow JT, Schlosser A, Siegel TN (2014) Comparative ribosome profiling reveals extensive translational complexity in different Trypanosoma brucei life cycle stages. Nucleic Acids Res 42: 3623–3637. doi: 10.1093/nar/gkt1386. pmid:24442674
[14]
Jensen BC, Ramasamy G, Vasconcelos EJ, Ingolia NT, Myler PJ, et al. (2014) Extensive stage-regulation of translation revealed by ribosome profiling of Trypanosoma brucei. BMC Genomics 15: 911. doi: 10.1186/1471-2164-15-911. pmid:25331479
[15]
Butter F, Bucerius F, Michel M, Cicova Z, Mann M, et al. (2013) Comparative proteomics of two life cycle stages of stable isotope-labeled Trypanosoma brucei reveals novel components of the parasite's host adaptation machinery. Mol Cell Proteomics 12: 172–179. doi: 10.1074/mcp.M112.019224. pmid:23090971
[16]
Gunasekera K, Wuthrich D, Braga-Lagache S, Heller M, Ochsenreiter T (2012) Proteome remodelling during development from blood to insect-form Trypanosoma brucei quantified by SILAC and mass spectrometry. BMC Genomics 13: 556. doi: 10.1186/1471-2164-13-556. pmid:23067041
[17]
Urbaniak MD, Guther ML, Ferguson MA (2012) Comparative SILAC proteomic analysis of Trypanosoma brucei bloodstream and procyclic lifecycle stages. PLoS One 7: e36619. doi: 10.1371/journal.pone.0036619. pmid:22574199
[18]
Imhof S, Knusel S, Gunasekera K, Vu XL, Roditi I (2014) Social motility of African trypanosomes is a property of a distinct life-cycle stage that occurs early in tsetse fly transmission. PLoS Pathog 10: e1004493. doi: 10.1371/journal.ppat.1004493. pmid:25357194
[19]
Janzen CJ, Hake SB, Lowell JE, Cross GA (2006) Selective Di- or Trimethylation of Histone H3 Lysine 76 by Two DOT1 Homologs Is Important for Cell Cycle Regulation in Trypanosoma brucei. Mol Cell 23: 497–507. pmid:16916638 doi: 10.1016/j.molcel.2006.06.027
[20]
Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26: 1367–1372. doi: 10.1038/nbt.1511. pmid:19029910
[21]
Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, et al. (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13: 2513–2526. doi: 10.1074/mcp.M113.031591. pmid:24942700
[22]
Rotureau B, Subota I, Bastin P (2011) Molecular bases of cytoskeleton plasticity during the Trypanosoma brucei parasite cycle. Cell Microbiol 13: 705–716. doi: 10.1111/j.1462-5822.2010.01566.x. pmid:21159115
[23]
Mayho M, Fenn K, Craddy P, Crosthwaite S, Matthews K (2006) Post-transcriptional control of nuclear-encoded cytochrome oxidase subunits in Trypanosoma brucei: evidence for genome-wide conservation of life-cycle stage-specific regulatory elements. Nucleic Acids Res 34: 5312–5324. pmid:17012283 doi: 10.1093/nar/gkl598
[24]
Muller IB, Domenicali-Pfister D, Roditi I, Vassella E (2002) Stage-specific requirement of a mitogen-activated protein kinase by Trypanosoma brucei. Mol Biol Cell 13: 3787–3799. pmid:12429824 doi: 10.1091/mbc.e02-02-0093
[25]
Dean S, Marchetti R, Kirk K, Matthews KR (2009) A surface transporter family conveys the trypanosome differentiation signal. Nature 459: 213–217. doi: 10.1038/nature07997. pmid:19444208
[26]
Panigrahi AK, Ogata Y, Zikova A, Anupama A, Dalley RA, et al. (2009) A comprehensive analysis of Trypanosoma brucei mitochondrial proteome. Proteomics 9: 434–450. doi: 10.1002/pmic.200800477. pmid:19105172
[27]
Szoor B, Ruberto I, Burchmore R, Matthews KR (2010) A novel phosphatase cascade regulates differentiation in Trypanosoma brucei via a glycosomal signaling pathway. Genes Dev 24: 1306–1316. doi: 10.1101/gad.570310. pmid:20551176
[28]
Emmer BT, Souther C, Toriello KM, Olson CL, Epting CL, et al. (2009) Identification of a palmitoyl acyltransferase required for protein sorting to the flagellar membrane. J Cell Sci 122: 867–874. doi: 10.1242/jcs.041764. pmid:19240115
[29]
Emmer BT, Nakayasu ES, Souther C, Choi H, Sobreira TJ, et al. (2011) Global analysis of protein palmitoylation in African trypanosomes. Eukaryot Cell 10: 455–463. doi: 10.1128/EC.00248-10. pmid:21193548
[30]
Vassella E, Kramer R, Turner CMR, Wankell M, Modes C, et al. (2001) Deletion of a novel protein kinase with PX and FYVE-related domains increases the rate of differentiation of Trypanosoma brucei. Molecular Microbiology 41: 33–46. pmid:11454198 doi: 10.1046/j.1365-2958.2001.02471.x
[31]
Domenicali Pfister D, Burkard G, Morand S, Renggli CK, Roditi I, et al. (2006) A Mitogen-Activated Protein Kinase Controls Differentiation of Bloodstream Forms of Trypanosoma brucei. Eukaryot Cell 5: 1126–1135. pmid:16835456 doi: 10.1128/ec.00094-06
[32]
Barquilla A, Saldivia M, Diaz R, Bart JM, Vidal I, et al. (2012) Third target of rapamycin complex negatively regulates development of quiescence in Trypanosoma brucei. Proc Natl Acad Sci U S A 109: 14399–14404. doi: 10.1073/pnas.1210465109. pmid:22908264
[33]
Morand S, Renggli CK, Roditi I, Vassella E (2012) MAP kinase kinase 1 (MKK1) is essential for transmission of Trypanosoma brucei by Glossina morsitans. Mol Biochem Parasitol 186: 73–76. doi: 10.1016/j.molbiopara.2012.09.001. pmid:22985893
[34]
Domingo-Sananes MR, Szoor B, Ferguson MA, Urbaniak MD, Matthews KR (2015) Molecular control of irreversible bistability during trypanosome developmental commitment. J Cell Biol 211: 455–468. doi: 10.1083/jcb.201506114. pmid:26483558
[35]
Alsford S, Turner DJ, Obado SO, Sanchez-Flores A, Glover L, et al. (2011) High-throughput phenotyping using parallel sequencing of RNA interference targets in the African trypanosome. Genome Res 21: 915–924. doi: 10.1101/gr.115089.110. pmid:21363968
[36]
Schlimme W, Burri M, Bender K, Betschart B, Hecker H (1993) Trypanosoma brucei brucei: differences in the nuclear chromatin of bloodstream forms and procyclic culture forms. Parasitology 107: 237–247. pmid:8233587 doi: 10.1017/s003118200007921x
[37]
Burri M, Schlimme W, Betschart B, Hecker H (1994) Characterization of the histones of Trypanosoma brucei brucei bloodstream forms. Acta Trop (Basel) 58: 291–305. doi: 10.1016/0001-706x(94)90023-x
[38]
Rout MP, Field MC (2001) Isolation and characterization of subnuclear compartments from Trypanosoma brucei. Identification of a major repetitive nuclear lamina component. J Biol Chem 276: 38261–38271. pmid:11477078
[39]
Mekhail K, Moazed D (2010) The nuclear envelope in genome organization, expression and stability. Nat Rev Mol Cell Biol 11: 317–328. doi: 10.1038/nrm2894. pmid:20414256
[40]
DeGrasse JA, DuBois KN, Devos D, Siegel TN, Sali A, et al. (2009) Evidence for a shared nuclear pore complex architecture that is conserved from the last common eukaryotic ancestor. Mol Cell Proteomics 8: 2119–2130. doi: 10.1074/mcp.M900038-MCP200. pmid:19525551
[41]
Prasad R, Metherell LA, Clark AJ, Storr HL (2013) Deficiency of ALADIN impairs redox homeostasis in human adrenal cells and inhibits steroidogenesis. Endocrinology 154: 3209–3218. doi: 10.1210/en.2013-1241. pmid:23825130
[42]
Dindar G, Anger AM, Mehlhorn C, Hake SB, Janzen CJ (2014) Structure-guided mutational analysis reveals the functional requirements for product specificity of DOT1 enzymes. Nat Commun 5: 5313. doi: 10.1038/ncomms6313. pmid:25387577
[43]
Figueiredo LM, Janzen CJ, Cross GA (2008) A histone methyltransferase modulates antigenic variation in African trypanosomes. PLoS Biol 6: e161. doi: 10.1371/journal.pbio.0060161. pmid:18597556
[44]
Matthews KR, Gull K (1994) Evidence for an interplay between cell cycle progression and the initiation of differentiation between life cycle forms of African trypanosomes. J Cell Biol 125: 1147–1156. pmid:8195296 doi: 10.1083/jcb.125.5.1147
[45]
Glover L, Horn D (2012) Trypanosomal histone gammaH2A and the DNA damage response. Mol Biochem Parasitol 183: 78–83. doi: 10.1016/j.molbiopara.2012.01.008. pmid:22353557
[46]
Jones B, Su H, Bhat A, Lei H, Bajko J, et al. (2008) The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure. PLoS Genet 4: e1000190. doi: 10.1371/journal.pgen.1000190. pmid:18787701
[47]
Hirumi H, Hirumi K (1989) Continuous cultivation of Trypanosoma brucei bloodstream forms in a medium containing a low concentration of serum protein without feeder cell layers. J Parasitol 75: 985–989. pmid:2614608 doi: 10.2307/3282883
[48]
McCulloch R, Vassella E, Burton P, Boshart M, Barry JD (2004) Transformation of monomorphic and pleomorphic Trypanosoma brucei. Methods Mol Biol 262: 53–86. pmid:14769956 doi: 10.1385/1-59259-761-0:053
[49]
Overath P, Czichos J, Haas C (1986) The effect of citrate/cis-aconitate on oxidative metabolism during transformation of Trypanosoma brucei. Eur J Biochem 160: 175–182. pmid:3769918 doi: 10.1111/j.1432-1033.1986.tb09955.x
[50]
Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1: 2856–2860. pmid:17406544 doi: 10.1038/nprot.2006.468
[51]
Kappei D, Butter F, Benda C, Scheibe M, Draskovic I, et al. (2013) HOT1 is a mammalian direct telomere repeat-binding protein contributing to telomerase recruitment. EMBO J 32: 1681–1701. doi: 10.1038/emboj.2013.105. pmid:23685356
[52]
Rappsilber J, Ishihama Y, Mann M (2003) Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 75: 663–670. pmid:12585499 doi: 10.1021/ac026117i
[53]
Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, et al. (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10: 1794–1805. doi: 10.1021/pr101065j. pmid:21254760