Macrophages can be niches for bacterial pathogens or antibacterial effector cells depending on the pathogen and signals from the immune system. Here we show that type I and II IFNs are master regulators of gene expression during Legionella pneumophila infection, and activators of an alveolar macrophage-intrinsic immune response that restricts bacterial growth during pneumonia. Quantitative mass spectrometry revealed that both IFNs substantially modify Legionella-containing vacuoles, and comparative analyses reveal distinct subsets of transcriptionally and spatially IFN-regulated proteins. Immune-responsive gene (IRG)1 is induced by IFNs in mitochondria that closely associate with Legionella-containing vacuoles, and mediates production of itaconic acid. This metabolite is bactericidal against intravacuolar L. pneumophila as well as extracellular multidrug-resistant Gram-positive and -negative bacteria. Our study explores the overall role IFNs play in inducing substantial remodeling of bacterial vacuoles and in stimulating production of IRG1-derived itaconic acid which targets intravacuolar pathogens. IRG1 or its product itaconic acid might be therapeutically targetable to fight intracellular and drug-resistant bacteria.
References
[1]
Kumar Y, Valdivia RH (2009) Leading a sheltered life: intracellular pathogens and maintenance of vacuolar compartments. Cell Host Microbe 5: 593–601. doi: 10.1016/j.chom.2009.05.014. pmid:19527886
Randow F, MacMicking JD, James LC (2013) Cellular self-defense: how cell-autonomous immunity protects against pathogens. Science 340: 701–706. doi: 10.1126/science.1233028. pmid:23661752
[4]
Hertzog P, Forster S, Samarajiwa S (2011) Systems biology of interferon responses. J Interferon Cytokine Res 31: 5–11. doi: 10.1089/jir.2010.0126. pmid:21226606
[5]
Isberg RR O'Connor TJ, Heidtman M (2009) The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat Rev Microbiol 7: 13–24. doi: 10.1038/nrmicro1967. pmid:19011659
[6]
Horwitz MA (1983) Formation of a novel phagosome by the Legionnaires' disease bacterium (Legionella pneumophila) in human monocytes. J Exp Med 158: 1319–1331. pmid:6619736 doi: 10.1084/jem.158.4.1319
[7]
Chong A, Lima CA, Allan DS, Nasrallah GK, Garduno RA (2009) The purified and recombinant Legionella pneumophila chaperonin alters mitochondrial trafficking and microfilament organization. Infect Immun 77: 4724–4739. doi: 10.1128/IAI.00150-09. pmid:19687203
[8]
Tilney LG, Harb OS, Connelly PS, Robinson CG, Roy CR (2001) How the parasitic bacterium Legionella pneumophila modifies its phagosome and transforms it into rough ER: implications for conversion of plasma membrane to the ER membrane. J Cell Sci 114: 4637–4650. pmid:11792828
[9]
Amer A, Franchi L, Kanneganti TD, Body-Malapel M, Ozoren N, et al. (2006) Regulation of Legionella phagosome maturation and infection through flagellin and host Ipaf. J Biol Chem 281: 35217–35223. pmid:16984919 doi: 10.1074/jbc.m604933200
[10]
Molofsky AB, Byrne BG, Whitfield NN, Madigan CA, Fuse ET, et al. (2006) Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. J Exp Med 203: 1093–1104. pmid:16606669 doi: 10.1084/jem.20051659
[11]
Ren T, Zamboni DS, Roy CR, Dietrich WF, Vance RE (2006) Flagellin-deficient Legionella mutants evade caspase-1- and Naip5-mediated macrophage immunity. PLoS Pathog 2: e18. pmid:16552444 doi: 10.1371/journal.ppat.0020018
[12]
Zamboni DS, Kobayashi KS, Kohlsdorf T, Ogura Y, Long EM, et al. (2006) The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat Immunol 7: 318–325. pmid:16444259 doi: 10.1038/ni1305
[13]
Kofoed EM, Vance RE (2011) Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477: 592–595. doi: 10.1038/nature10394. pmid:21874021
[14]
Coers J, Vance RE, Fontana MF, Dietrich WF (2007) Restriction of Legionella pneumophila growth in macrophages requires the concerted action of cytokine and Naip5/Ipaf signalling pathways. Cell Microbiol 9: 2344–2357. pmid:17506816 doi: 10.1111/j.1462-5822.2007.00963.x
[15]
Lippmann J, Muller HC, Naujoks J, Tabeling C, Shin S, et al. (2011) Dissection of a type I interferon pathway in controlling bacterial intracellular infection in mice. Cell Microbiol 13: 1668–1682. doi: 10.1111/j.1462-5822.2011.01646.x. pmid:21790939
[16]
Opitz B, Vinzing M, van Laak V, Schmeck B, Heine G, et al. (2006) Legionella pneumophila induces IFNbeta in lung epithelial cells via IPS-1 and IRF3, which also control bacterial replication. J Biol Chem 281: 36173–36179. pmid:16984921 doi: 10.1074/jbc.m604638200
[17]
Schiavoni G, Mauri C, Carlei D, Belardelli F, Pastoris MC, et al. (2004) Type I IFN protects permissive macrophages from Legionella pneumophila infection through an IFN-gamma-independent pathway. J Immunol 173: 1266–1275. pmid:15240719 doi: 10.4049/jimmunol.173.2.1266
[18]
Plumlee CR, Lee C, Beg AA, Decker T, Shuman HA, et al. (2009) Interferons direct an effective innate response to Legionella pneumophila infection. J Biol Chem 284: 30058–30066. doi: 10.1074/jbc.M109.018283. pmid:19720834
[19]
Lippmann J, Rothenburg S, Deigendesch N, Eitel J, Meixenberger K, et al. (2008) IFNbeta responses induced by intracellular bacteria or cytosolic DNA in different human cells do not require ZBP1 (DLM-1/DAI). Cell Microbiol 10: 2579–2588. doi: 10.1111/j.1462-5822.2008.01232.x. pmid:18771559
[20]
Copenhaver AM, Casson CN, Nguyen HT, Fung TC, Duda MM, et al. (2014) Alveolar macrophages and neutrophils are the primary reservoir for Legionella pneumophila and mediate cytosolic surveillance of type IV secretion. Infect Immun. 82: 4325–4336. doi: 10.1128/IAI.01891-14. pmid:25092908
[21]
Nogueira CV, Lindsten T, Jamieson AM, Case CL, Shin S, et al. (2009) Rapid pathogen-induced apoptosis: a mechanism used by dendritic cells to limit intracellular replication of Legionella pneumophila. PLoS Pathog 5: e1000478. doi: 10.1371/journal.ppat.1000478. pmid:19521510
[22]
Nash TW, Libby DM, Horwitz MA (1984) Interaction between the legionnaires' disease bacterium (Legionella pneumophila) and human alveolar macrophages. Influence of antibody, lymphokines, and hydrocortisone. J Clin Invest 74: 771–782. pmid:6470140 doi: 10.1172/jci111493
[23]
Bogdan C, Schleicher U (2006) Production of interferon-gamma by myeloid cells—fact or fancy? Trends Immunol 27: 282–290. pmid:16698319 doi: 10.1016/j.it.2006.04.004
[24]
Robinson N, McComb S, Mulligan R, Dudani R, Krishnan L, et al. (2012) Type I interferon induces necroptosis in macrophages during infection with Salmonella enterica serovar Typhimurium. Nat Immunol 13: 954–962. doi: 10.1038/ni.2397. pmid:22922364
[25]
Aachoui Y, Leaf IA, Hagar JA, Fontana MF, Campos CG, et al. (2013) Caspase-11 protects against bacteria that escape the vacuole. Science 339: 975–978. doi: 10.1126/science.1230751. pmid:23348507
[26]
Nathan C, Shiloh MU (2000) Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci U S A 97: 8841–8848. pmid:10922044 doi: 10.1073/pnas.97.16.8841
[27]
Hoffmann C, Finsel I, Hilbi H (2013) Pathogen vacuole purification from legionella-infected amoeba and macrophages. Methods Mol Biol 954: 309–321. doi: 10.1007/978-1-62703-161-5_18. pmid:23150404
[28]
Samarajiwa SA, Forster S, Auchettl K, Hertzog PJ (2009) INTERFEROME: the database of interferon regulated genes. Nucleic Acids Res 37: D852–857. doi: 10.1093/nar/gkn732. pmid:18996892
[29]
Degrandi D, Hoffmann R, Beuter-Gunia C, Pfeffer K (2009) The proinflammatory cytokine-induced IRG1 protein associates with mitochondria. J Interferon Cytokine Res 29: 55–67. doi: 10.1089/jir.2008.0013. pmid:19014335
[30]
Michelucci A, Cordes T, Ghelfi J, Pailot A, Reiling N, et al. (2013) Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc Natl Acad Sci U S A 110: 7820–7825. doi: 10.1073/pnas.1218599110. pmid:23610393
[31]
Hall CJ, Boyle RH, Astin JW, Flores MV, Oehlers SH, et al. (2013) Immunoresponsive gene 1 augments bactericidal activity of macrophage-lineage cells by regulating beta-oxidation-dependent mitochondrial ROS production. Cell Metab 18: 265–278. doi: 10.1016/j.cmet.2013.06.018. pmid:23931757
[32]
Weekes MP, Tomasec P, Huttlin EL, Fielding CA, Nusinow D, et al. (2014) Quantitative temporal viromics: an approach to investigate host-pathogen interaction. Cell 157: 1460–1472. doi: 10.1016/j.cell.2014.04.028. pmid:24906157
[33]
Schoggins JW, MacDuff DA, Imanaka N, Gainey MD, Shrestha B, et al. (2014) Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature 505: 691–695. doi: 10.1038/nature12862. pmid:24284630
[34]
Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, et al. (2011) A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472: 481–485. doi: 10.1038/nature09907. pmid:21478870
[35]
Liu SY, Sanchez DJ, Aliyari R, Lu S, Cheng G (2012) Systematic identification of type I and type II interferon-induced antiviral factors. Proc Natl Acad Sci U S A 109: 4239–4244. doi: 10.1073/pnas.1114981109. pmid:22371602
[36]
Fusco DN, Brisac C, John SP, Huang YW, Chin CR, et al. (2013) A genetic screen identifies interferon-alpha effector genes required to suppress hepatitis C virus replication. Gastroenterology 144: 1438–1449. doi: 10.1053/j.gastro.2013.02.026. pmid:23462180
[37]
Zhang Y, Burke CW, Ryman KD, Klimstra WB (2007) Identification and characterization of interferon-induced proteins that inhibit alphavirus replication. J Virol 81: 11246–11255. pmid:17686841 doi: 10.1128/jvi.01282-07
[38]
Metz P, Dazert E, Ruggieri A, Mazur J, Kaderali L, et al. (2012) Identification of type I and type II interferon-induced effectors controlling hepatitis C virus replication. Hepatology 56: 2082–2093. doi: 10.1002/hep.25908. pmid:22711689
[39]
Degrandi D, Kravets E, Konermann C, Beuter-Gunia C, Klumpers V, et al. (2013) Murine guanylate binding protein 2 (mGBP2) controls Toxoplasma gondii replication. Proc Natl Acad Sci U S A 110: 294–299. doi: 10.1073/pnas.1205635110. pmid:23248289
[40]
Kim BH, Shenoy AR, Kumar P, Das R, Tiwari S, et al. (2011) A family of IFN-gamma-inducible 65-kD GTPases protects against bacterial infection. Science 332: 717–721. doi: 10.1126/science.1201711. pmid:21551061
[41]
Martens S, Parvanova I, Zerrahn J, Griffiths G, Schell G, et al. (2005) Disruption of Toxoplasma gondii parasitophorous vacuoles by the mouse p47-resistance GTPases. PLoS Pathog 1: e24. pmid:16304607 doi: 10.1371/journal.ppat.0010024
[42]
Tiwari S, Choi HP, Matsuzawa T, Pypaert M, MacMicking JD (2009) Targeting of the GTPase Irgm1 to the phagosomal membrane via PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) promotes immunity to mycobacteria. Nat Immunol 10: 907–917. doi: 10.1038/ni.1759. pmid:19620982
[43]
Yamamoto M, Okuyama M, Ma JS, Kimura T, Kamiyama N, et al. (2012) A cluster of interferon-gamma-inducible p65 GTPases plays a critical role in host defense against Toxoplasma gondii. Immunity 37: 302–313. pmid:22795875 doi: 10.1016/j.immuni.2012.06.009
[44]
Taylor GA, Feng CG, Sher A (2004) p47 GTPases: regulators of immunity to intracellular pathogens. Nat Rev Immunol 4: 100–109. pmid:15040583 doi: 10.1038/nri1270
[45]
Trost M, English L, Lemieux S, Courcelles M, Desjardins M, et al. (2009) The phagosomal proteome in interferon-gamma-activated macrophages. Immunity 30: 143–154. doi: 10.1016/j.immuni.2008.11.006. pmid:19144319
[46]
Sinai AP, Joiner KA (2001) The Toxoplasma gondii protein ROP2 mediates host organelle association with the parasitophorous vacuole membrane. J Cell Biol 154: 95–108. pmid:11448993 doi: 10.1083/jcb.200101073
[47]
Matsumoto A, Bessho H, Uehira K, Suda T (1991) Morphological studies of the association of mitochondria with chlamydial inclusions and the fusion of chlamydial inclusions. J Electron Microsc (Tokyo) 40: 356–363.
[48]
Dolezal P, Aili M, Tong J, Jiang JH, Marobbio CM, et al. (2012) Legionella pneumophila secretes a mitochondrial carrier protein during infection. PLoS Pathog 8: e1002459. doi: 10.1371/journal.ppat.1002459. pmid:22241989
[49]
West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, et al. (2011) TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472: 476–480. doi: 10.1038/nature09973. pmid:21525932
[50]
McFadden BA, Purohit S (1977) Itaconate, an isocitrate lyase-directed inhibitor in Pseudomonas indigofera. J Bacteriol 131: 136–144. pmid:17593
[51]
Eylert E, Herrmann V, Jules M, Gillmaier N, Lautner M, et al. (2010) Isotopologue profiling of Legionella pneumophila: role of serine and glucose as carbon substrates. J Biol Chem 285: 22232–22243. doi: 10.1074/jbc.M110.128678. pmid:20442401
[52]
Savvi S, Warner DF, Kana BD, McKinney JD, Mizrahi V, et al. (2008) Functional characterization of a vitamin B12-dependent methylmalonyl pathway in Mycobacterium tuberculosis: implications for propionate metabolism during growth on fatty acids. J Bacteriol 190: 3886–3895. doi: 10.1128/JB.01767-07. pmid:18375549
[53]
Pilla DM, Hagar JA, Haldar AK, Mason AK, Degrandi D, et al. (2014) Guanylate binding proteins promote caspase-11-dependent pyroptosis in response to cytoplasmic LPS. Proc Natl Acad Sci U S A 111: 6046–6051. doi: 10.1073/pnas.1321700111. pmid:24715728
[54]
Decker T, Muller M, Stockinger S (2005) The yin and yang of type I interferon activity in bacterial infection. Nat Rev Immunol 5: 675–687. pmid:16110316 doi: 10.1038/nri1684
[55]
Mampel J, Spirig T, Weber SS, Haagensen JA, Molin S, et al. (2006) Planktonic replication is essential for biofilm formation by Legionella pneumophila in a complex medium under static and dynamic flow conditions. Appl Environ Microbiol 72: 2885–2895. pmid:16597995 doi: 10.1128/aem.72.4.2885-2895.2006
[56]
Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, et al. (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479: 117–121. doi: 10.1038/nature10558. pmid:22002608
[57]
Newton K, Sun X, Dixit VM (2004) Kinase RIP3 is dispensable for normal NF-kappa Bs, signaling by the B-cell and T-cell receptors, tumor necrosis factor receptor 1, and Toll-like receptors 2 and 4. Mol Cell Biol 24: 1464–1469. pmid:14749364 doi: 10.1128/mcb.24.4.1464-1469.2004
[58]
Jung S, Unutmaz D, Wong P, Sano G, De los Santos K, et al. (2002) In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17: 211–220. pmid:12196292 doi: 10.1016/s1074-7613(02)00365-5
[59]
Koppe U, Hogner K, Doehn JM, Muller HC, Witzenrath M, et al. (2012) Streptococcus pneumoniae stimulates a STING- and IFN regulatory factor 3-dependent type I IFN production in macrophages, which regulates RANTES production in macrophages, cocultured alveolar epithelial cells, and mouse lungs. J Immunol 188: 811–817. doi: 10.4049/jimmunol.1004143. pmid:22156592
[60]
Churchill GA (2002) Fundamentals of experimental design for cDNA microarrays. Nat Genet 32: 490–495. pmid:12454643 doi: 10.1038/ng1031
[61]
Davey GM, Wojtasiak M, Proietto AI, Carbone FR, Heath WR, et al. (2010) Cutting edge: priming of CD8 T cell immunity to herpes simplex virus type 1 requires cognate TLR3 expression in vivo. J Immunol 184: 2243–2246. doi: 10.4049/jimmunol.0903013. pmid:20124105
[62]
Ang DK, Ong SY, Brown AS, Hartland EL, van Driel IR (2012) A method for quantifying pulmonary Legionella pneumophila infection in mouse lungs by flow cytometry. BMC Res Notes 5: 448. doi: 10.1186/1756-0500-5-448. pmid:22905869
[63]
Weber SS, Ragaz C, Reus K, Nyfeler Y, Hilbi H (2006) Legionella pneumophila exploits PI(4)P to anchor secreted effector proteins to the replicative vacuole. PLoS Pathog 2: e46. pmid:16710455 doi: 10.1371/journal.ppat.0020046
[64]
Hoffmann C, Finsel I, Otto A, Pfaffinger G, Rothmeier E, et al. (2013) Functional analysis of novel Rab GTPases identified in the proteome of purified Legionella-containing vacuoles from macrophages. Cell Microbiol 16: 1034–1052. doi: 10.1111/cmi.12256
[65]
Ritorto MS, Cook K, Tyagi K, Pedrioli PG, Trost M (2013) Hydrophilic strong anion exchange (hSAX) chromatography for highly orthogonal peptide separation of complex proteomes. J Proteome Res 12: 2449–2457. doi: 10.1021/pr301011r. pmid:23294059
[66]
Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26: 1367–1372. doi: 10.1038/nbt.1511. pmid:19029910
[67]
Reimand J, Arak T, Vilo J (2011) g:Profiler—a web server for functional interpretation of gene lists (2011 update). Nucleic Acids Res 39: W307–315. doi: 10.1093/nar/gkr378. pmid:21646343
[68]
Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21: 3448–3449. pmid:15972284 doi: 10.1093/bioinformatics/bti551
[69]
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13: 2498–2504. pmid:14597658 doi: 10.1101/gr.1239303
[70]
Pietzke M, Zasada C, Mudrich S, Kempa S (2014) Decoding the dynamics of cellular metabolism and the action of 3-bromopyruvate and 2-deoxyglucose using pulsed stable isotope-resolved metabolomics. Cancer Metab 2: 9. doi: 10.1186/2049-3002-2-9. pmid:25035808
[71]
Kempa S, Hummel J, Schwemmer T, Pietzke M, Strehmel N, et al. (2009) An automated GCxGC-TOF-MS protocol for batch-wise extraction and alignment of mass isotopomer matrixes from differential 13C-labelling experiments: a case study for photoautotrophic-mixotrophic grown Chlamydomonas reinhardtii cells. J Basic Microbiol 49: 82–91. doi: 10.1002/jobm.200800337. pmid:19206143