全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Protein Kinase R Degradation Is Essential for Rift Valley Fever Virus Infection and Is Regulated by SKP1-CUL1-F-box (SCF)FBXW11-NSs E3 Ligase

DOI: 10.1371/journal.ppat.1005437

Full-Text   Cite this paper   Add to My Lib

Abstract:

Activated protein kinase R (PKR) plays a vital role in antiviral defense primarily by inhibiting protein synthesis and augmenting interferon responses. Many viral proteins have adopted unique strategies to counteract the deleterious effects of PKR. The NSs (Non-structural s) protein which is encoded by Rift Valley fever virus (RVFV) promotes early PKR proteasomal degradation through a previously undefined mechanism. In this study, we demonstrate that NSs carries out this activity by assembling the SCF (SKP1-CUL1-F-box)FBXW11 E3 ligase. NSs binds to the F-box protein, FBXW11, via the six amino acid sequence DDGFVE called the degron sequence and recruits PKR through an alternate binding site to the SCFFBXW11 E3 ligase. We further show that disrupting the assembly of the SCFFBXW11-NSs E3 ligase with MLN4924 (a small molecule inhibitor of SCF E3 ligase activity) or NSs degron viral mutants or siRNA knockdown of FBXW11 can block PKR degradation. Surprisingly, under these conditions when PKR degradation was blocked, NSs was essential and sufficient to activate PKR causing potent inhibition of RVFV infection by suppressing viral protein synthesis. These antiviral effects were antagonized by the loss of PKR expression or with a NSs deleted mutant virus. Therefore, early PKR activation by disassembly of SCFFBXW11-NSs E3 ligase is sufficient to inhibit RVFV infection. Furthermore, FBXW11 and BTRC are the two homologues of the βTrCP (Beta-transducin repeat containing protein) gene that were previously described to be functionally redundant. However, in RVFV infection, among the two homologues of βTrCP, FBXW11 plays a dominant role in PKR degradation and is the limiting factor in the assembly of the SCFFBXW11 complex. Thus, FBXW11 serves as a master regulator of RVFV infection by promoting PKR degradation. Overall these findings provide new insights into NSs regulation of PKR activity and offer potential opportunities for therapeutic intervention of RVFV infection.

References

[1]  George CX, Li Z, Okonski KM, Toth AM, Wang Y, Samuel CE. Tipping the balance: antagonism of PKR kinase and ADAR1 deaminase functions by virus gene products. Journal of interferon & cytokine research: the official journal of the International Society for Interferon and Cytokine Research. 2009;29(9):477–87. doi: 10.1089/jir.2009.0065 pmid:19715457; PubMed Central PMCID: PMC2956706.
[2]  Petroski MD, Deshaies RJ. Function and regulation of cullin-RING ubiquitin ligases. Nature reviews Molecular cell biology. 2005;6(1):9–20. doi: 10.1038/nrm1547 pmid:15688063.
[3]  Pan ZQ, Kentsis A, Dias DC, Yamoah K, Wu K. Nedd8 on cullin: building an expressway to protein destruction. Oncogene. 2004;23(11):1985–97. doi: 10.1038/sj.onc.1207414 pmid:15021886.
[4]  Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari S, et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature. 2009;458(7239):732–6. doi: 10.1038/nature07884 pmid:19360080.
[5]  de Boer SM, Kortekaas J, Spel L, Rottier PJ, Moormann RJ, Bosch BJ. Acid-activated structural reorganization of the Rift Valley fever virus Gc fusion protein. Journal of virology. 2012;86(24):13642–52. doi: 10.1128/JVI.01973-12 pmid:23035232; PubMed Central PMCID: PMCPMC3503025.
[6]  Shi X, Kohl A, Li P, Elliott RM. Role of the cytoplasmic tail domains of Bunyamwera orthobunyavirus glycoproteins Gn and Gc in virus assembly and morphogenesis. Journal of virology. 2007;81(18):10151–60. doi: 10.1128/JVI.00573-07 pmid:17609275; PubMed Central PMCID: PMCPMC2045389.
[7]  Strandin T, Hepojoki J, Wang H, Vaheri A, Lankinen H. The cytoplasmic tail of hantavirus Gn glycoprotein interacts with RNA. Virology. 2011;418(1):12–20. doi: 10.1016/j.virol.2011.06.030 pmid:21807393.
[8]  Carnec X, Ermonval M, Kreher F, Flamand M, Bouloy M. Role of the cytosolic tails of Rift Valley fever virus envelope glycoproteins in viral morphogenesis. Virology. 2014;448:1–14. doi: 10.1016/j.virol.2013.09.023 pmid:24314631.
[9]  Mudhasani R, Tran JP, Retterer C, Radoshitzky SR, Kota KP, Altamura LA, et al. IFITM-2 and IFITM-3 but not IFITM-1 restrict Rift Valley fever virus. Journal of virology. 2013;87(15):8451–64. doi: 10.1128/JVI.03382-12 pmid:23720721; PubMed Central PMCID: PMC3719792.
[10]  Bouloy M, Janzen C, Vialat P, Khun H, Pavlovic J, Huerre M, et al. Genetic evidence for an interferon-antagonistic function of rift valley fever virus nonstructural protein NSs. Journal of virology. 2001;75(3):1371–7. doi: 10.1128/JVI.75.3.1371–1377.2001 pmid:11152510; PubMed Central PMCID: PMC114043.
[11]  Dungu B, Louw I, Lubisi A, Hunter P, von Teichman BF, Bouloy M. Evaluation of the efficacy and safety of the Rift Valley Fever Clone 13 vaccine in sheep. Vaccine. 2010;28(29):4581–7. doi: 10.1016/j.vaccine.2010.04.085 pmid:20470792.
[12]  Muller R, Saluzzo JF, Lopez N, Dreier T, Turell M, Smith J, et al. Characterization of clone 13, a naturally attenuated avirulent isolate of Rift Valley fever virus, which is altered in the small segment. The American journal of tropical medicine and hygiene. 1995;53(4):405–11. pmid:7485695.
[13]  Ikegami T, Narayanan K, Won S, Kamitani W, Peters CJ, Makino S. Rift Valley fever virus NSs protein promotes post-transcriptional downregulation of protein kinase PKR and inhibits eIF2alpha phosphorylation. PLoS pathogens. 2009;5(2):e1000287. doi: 10.1371/journal.ppat.1000287 pmid:19197350; PubMed Central PMCID: PMC2629125.
[14]  Habjan M, Pichlmair A, Elliott RM, Overby AK, Glatter T, Gstaiger M, et al. NSs protein of rift valley fever virus induces the specific degradation of the double-stranded RNA-dependent protein kinase. Journal of virology. 2009;83(9):4365–75. Epub 2009/02/13. doi: JVI.02148-08 [pii] doi: 10.1128/JVI.02148-08 pmid:19211744.
[15]  Kalveram B, Lihoradova O, Indran SV, Lokugamage N, Head JA, Ikegami T. Rift Valley fever virus NSs inhibits host transcription independently of the degradation of dsRNA-dependent protein kinase PKR. Virology. 2013;435(2):415–24. doi: 10.1016/j.virol.2012.09.031 pmid:23063407; PubMed Central PMCID: PMC3534933.
[16]  Mudhasani R, Kota KP, Retterer C, Tran JP, Tritsch SR, Zamani R, et al. High-content image-based screening of a signal transduction pathway inhibitor small-molecule library against highly pathogenic RNA viruses. Journal of biomolecular screening. 2015;20(1):141–52. doi: 10.1177/1087057114556253 pmid:25342145.
[17]  Mudhasani R, Kota KP, Retterer C, Tran JP, Whitehouse CA, Bavari S. High content image-based screening of a protease inhibitor library reveals compounds broadly active against Rift Valley fever virus and other highly pathogenic RNA viruses. PLoS neglected tropical diseases. 2014;8(8):e3095. doi: 10.1371/journal.pntd.0003095 pmid:25144302; PubMed Central PMCID: PMC4140764.
[18]  Wada H, Yeh ET, Kamitani T. A dominant-negative UBC12 mutant sequesters NEDD8 and inhibits NEDD8 conjugation in vivo. The Journal of biological chemistry. 2000;275(22):17008–15. pmid:10828074. doi: 10.1074/jbc.275.22.17008
[19]  Kalveram B, Lihoradova O, Ikegami T. NSs protein of rift valley fever virus promotes posttranslational downregulation of the TFIIH subunit p62. Journal of virology. 2011;85(13):6234–43. doi: 10.1128/JVI.02255-10 pmid:21543505; PubMed Central PMCID: PMC3126510.
[20]  Ikegami T, Won S, Peters CJ, Makino S. Rescue of infectious rift valley fever virus entirely from cDNA, analysis of virus lacking the NSs gene, and expression of a foreign gene. Journal of virology. 2006;80(6):2933–40. Epub 2006/02/28. doi: 10.1128/JVI.80.6.2933–2940.2006 pmid:16501102; PubMed Central PMCID: PMC1395455.
[21]  Jin J, Ang XL, Shirogane T, Wade Harper J. Identification of substrates for F-box proteins. Methods in enzymology. 2005;399:287–309. doi: 10.1016/S0076-6879(05)99020-4 pmid:16338364.
[22]  Jin J, Cardozo T, Lovering RC, Elledge SJ, Pagano M, Harper JW. Systematic analysis and nomenclature of mammalian F-box proteins. Genes & development. 2004;18(21):2573–80. doi: 10.1101/gad.1255304 pmid:15520277; PubMed Central PMCID: PMC525538.
[23]  Frescas D, Pagano M. Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer. Nature reviews Cancer. 2008;8(6):438–49. doi: 10.1038/nrc2396 pmid:18500245; PubMed Central PMCID: PMC2711846.
[24]  Black TL, Safer B, Hovanessian A, Katze MG. The cellular 68,000-Mr protein kinase is highly autophosphorylated and activated yet significantly degraded during poliovirus infection: implications for translational regulation. Journal of virology. 1989;63(5):2244–51. pmid:2539516; PubMed Central PMCID: PMC250642.
[25]  Zhang P, Jacobs BL, Samuel CE. Loss of protein kinase PKR expression in human HeLa cells complements the vaccinia virus E3L deletion mutant phenotype by restoration of viral protein synthesis. Journal of virology. 2008;82(2):840–8. doi: 10.1128/JVI.01891-07 pmid:17959656; PubMed Central PMCID: PMC2224564.
[26]  Weber F, Wagner V, Rasmussen SB, Hartmann R, Paludan SR. Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. Journal of virology. 2006;80(10):5059–64. doi: 10.1128/JVI.80.10.5059–5064.2006 pmid:16641297; PubMed Central PMCID: PMCPMC1472073.
[27]  Baer A, Austin D, Narayanan A, Popova T, Kainulainen M, Bailey C, et al. Induction of DNA damage signaling upon Rift Valley fever virus infection results in cell cycle arrest and increased viral replication. The Journal of biological chemistry. 2012;287(10):7399–410. doi: 10.1074/jbc.M111.296608 pmid:22223653; PubMed Central PMCID: PMC3293538.
[28]  Narayanan A, Amaya M, Voss K, Chung M, Benedict A, Sampey G, et al. Reactive oxygen species activate NFkappaB (p65) and p53 and induce apoptosis in RVFV infected liver cells. Virology. 2014;449:270–86. doi: 10.1016/j.virol.2013.11.023 pmid:24418562.
[29]  Fuchs SY, Spiegelman VS, Kumar KG. The many faces of beta-TrCP E3 ubiquitin ligases: reflections in the magic mirror of cancer. Oncogene. 2004;23(11):2028–36. doi: 10.1038/sj.onc.1207389 pmid:15021890.
[30]  Kim TY, Siesser PF, Rossman KL, Goldfarb D, Mackinnon K, Yan F, et al. Substrate trapping proteomics reveals targets of the betaTrCP2/FBXW11 ubiquitin ligase. Molecular and cellular biology. 2015;35(1):167–81. doi: 10.1128/MCB.00857-14 pmid:25332235; PubMed Central PMCID: PMC4295375.
[31]  Guardavaccaro D, Kudo Y, Boulaire J, Barchi M, Busino L, Donzelli M, et al. Control of meiotic and mitotic progression by the F box protein beta-Trcp1 in vivo. Developmental cell. 2003;4(6):799–812. pmid:12791266. doi: 10.1016/s1534-5807(03)00154-0
[32]  Nakayama K, Hatakeyama S, Maruyama S, Kikuchi A, Onoe K, Good RA, et al. Impaired degradation of inhibitory subunit of NF-kappa B (I kappa B) and beta-catenin as a result of targeted disruption of the beta-TrCP1 gene. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(15):8752–7. doi: 10.1073/pnas.1133216100 pmid:12843402; PubMed Central PMCID: PMC166385.
[33]  Kanarek N, Grivennikov SI, Leshets M, Lasry A, Alkalay I, Horwitz E, et al. Critical role for IL-1beta in DNA damage-induced mucositis. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(6):E702–11. doi: 10.1073/pnas.1322691111 pmid:24469832; PubMed Central PMCID: PMCPMC3926043.
[34]  Putters J, Slotman JA, Gerlach JP, Strous GJ. Specificity, location and function of betaTrCP isoforms and their splice variants. Cellular signalling. 2011;23(4):641–7. doi: 10.1016/j.cellsig.2010.11.015 pmid:21138764.
[35]  Cyr N, de la Fuente C, Lecoq L, Guendel I, Chabot PR, Kehn-Hall K, et al. A OmegaXaV motif in the Rift Valley fever virus NSs protein is essential for degrading p62, forming nuclear filaments and virulence. Proceedings of the National Academy of Sciences of the United States of America. 2015;112(19):6021–6. doi: 10.1073/pnas.1503688112 pmid:25918396; PubMed Central PMCID: PMC4434773.
[36]  Kainulainen M, Habjan M, Hubel P, Busch L, Lau S, Colinge J, et al. Virulence factor NSs of rift valley fever virus recruits the F-box protein FBXO3 to degrade subunit p62 of general transcription factor TFIIH. Journal of virology. 2014;88(6):3464–73. doi: 10.1128/JVI.02914-13 pmid:24403578; PubMed Central PMCID: PMC3957945.
[37]  Morrill JC, Ikegami T, Yoshikawa-Iwata N, Lokugamage N, Won S, Terasaki K, et al. Rapid accumulation of virulent rift valley Fever virus in mice from an attenuated virus carrying a single nucleotide substitution in the m RNA. PloS one. 2010;5(4):e9986. Epub 2010/04/09. doi: 10.1371/journal.pone.0009986 pmid:20376320; PubMed Central PMCID: PMC2848673.
[38]  Panchal RG, Kota KP, Spurgers KB, Ruthel G, Tran JP, Boltz RC, et al. Development of high-content imaging assays for lethal viral pathogens. Journal of biomolecular screening. 2010;15(7):755–65. doi: 10.1177/1087057110374357 pmid:20639507.
[39]  Ohta T, Michel JJ, Schottelius AJ, Xiong Y. ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. Molecular cell. 1999;3(4):535–41. pmid:10230407. doi: 10.1016/s1097-2765(00)80482-7
[40]  Hu J, Zacharek S, He YJ, Lee H, Shumway S, Duronio RJ, et al. WD40 protein FBW5 promotes ubiquitination of tumor suppressor TSC2 by DDB1-CUL4-ROC1 ligase. Genes & development. 2008;22(7):866–71. doi: 10.1101/gad.1624008 pmid:18381890; PubMed Central PMCID: PMC2279197.
[41]  Andrews P, He YJ, Xiong Y. Cytoplasmic localized ubiquitin ligase cullin 7 binds to p53 and promotes cell growth by antagonizing p53 function. Oncogene. 2006;25(33):4534–48. doi: 10.1038/sj.onc.1209490 pmid:16547496.
[42]  Furukawa M, Zhang Y, McCarville J, Ohta T, Xiong Y. The CUL1 C-terminal sequence and ROC1 are required for efficient nuclear accumulation, NEDD8 modification, and ubiquitin ligase activity of CUL1. Molecular and cellular biology. 2000;20(21):8185–97. pmid:11027288; PubMed Central PMCID: PMC86428. doi: 10.1128/mcb.20.21.8185-8197.2000
[43]  Liu J, Furukawa M, Matsumoto T, Xiong Y. NEDD8 modification of CUL1 dissociates p120(CAND1), an inhibitor of CUL1-SKP1 binding and SCF ligases. Molecular cell. 2002;10(6):1511–8. pmid:12504025. doi: 10.1016/s1097-2765(02)00783-9
[44]  Zhao Y, Xiong X, Sun Y. DEPTOR, an mTOR inhibitor, is a physiological substrate of SCF(betaTrCP) E3 ubiquitin ligase and regulates survival and autophagy. Molecular cell. 2011;44(2):304–16. doi: 10.1016/j.molcel.2011.08.029 pmid:22017876; PubMed Central PMCID: PMC3216641.
[45]  Suzuki H, Chiba T, Suzuki T, Fujita T, Ikenoue T, Omata M, et al. Homodimer of two F-box proteins betaTrCP1 or betaTrCP2 binds to IkappaBalpha for signal-dependent ubiquitination. The Journal of biological chemistry. 2000;275(4):2877–84. pmid:10644755. doi: 10.1074/jbc.275.4.2877
[46]  Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8. doi: 10.1006/meth.2001.1262 pmid:11846609.
[47]  Drosten C, Gottig S, Schilling S, Asper M, Panning M, Schmitz H, et al. Rapid detection and quantification of RNA of Ebola and Marburg viruses, Lassa virus, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, dengue virus, and yellow fever virus by real-time reverse transcription-PCR. Journal of clinical microbiology. 2002;40(7):2323–30. pmid:12089242; PubMed Central PMCID: PMC120575. doi: 10.1128/jcm.40.7.2323-2330.2002

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133