全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Expression of Streptococcus pneumoniae Bacteriocins Is Induced by Antibiotics via Regulatory Interplay with the Competence System

DOI: 10.1371/journal.ppat.1005422

Full-Text   Cite this paper   Add to My Lib

Abstract:

Pneumococcal bacteriocins (pneumocins) are antibacterial toxins that mediate intra-species competition within the human host. However, the triggers of pneumocin expression are poorly understood. Using RNA-sequencing, we mapped the regulon of the pneumocin cluster (blp) of Streptococcus pneumoniae D39. Furthermore, by analogy with pneumococcal competence, we show that several antibiotics activate the blp-genes. Using real-time gene expression measurements we show that while the promoter driving expression of the two-component regulatory system blpR/H is constitutive, the remaining blp-promoters that control pneumocin expression, immunity and the inducer peptide BlpC, are pH-dependent and induced in the late exponential phase. Intriguingly, competence for genetic transformation, mediated by the paralogous ComD/E two-component quorum system, is induced by the same environmental cues. To test for interplay between these regulatory systems, we quantified the regulatory response to the addition of synthetic BlpC and competence-stimulating peptide (CSP). Supporting the idea of such interplay, we found that immediately upon addition of CSP, the blp-promoters were activated in a comD/E-dependent manner. After a delay, blp-expression was highly induced and was strictly dependent on blpRH and blpC. This raised the question of the mechanism of BlpC export, since bioinformatic analysis showed that the genes encoding the putative exporter for BlpC, blpAB, are not intact in strain D39 and most other strains. By contrast, all sequenced pneumococcal strains contain intact comAB genes, encoding the transport system for CSP. Consistent with the idea that comAB mediate BlpC export, we finally show that high-level expression of the blp-genes requires comAB. Together, our results demonstrate that regulation of pneumocin expression is intertwined with competence, explaining why certain antibiotics induce blp-expression. Antibiotic-induced pneumocin expression might therefore have unpredictable consequences on pneumococcal colonization dynamics by activating genes that mediate intra-specific interference competition.

References

[1]  Regev-Yochay G, Raz M, Dagan R, Porat N, Shainberg B, Pinco E, et al. Nasopharyngeal carriage of Streptococcus pneumoniae by adults and children in community and family settings. Clin Infect Dis. 2004;38: 632–639. doi: 10.1086/381547. pmid:14986245
[2]  Guiral S, Mitchell TJ, Martin B, Claverys J-P. Competence-programmed predation of noncompetent cells in the human pathogen Streptococcus pneumoniae: genetic requirements. Proc Natl Acad Sci USA. 2005;102: 8710–8715. doi: 10.1073/pnas.0500879102. pmid:15928084
[3]  Hoover SE, Perez AJ, Tsui H-CT, Sinha D, Smiley DL, DiMarchi RD, et al. A new quorum sensing system (TprA/PhrA) for Streptococcus pneumoniae D39 that regulates a lantibiotic biosynthesis gene cluster. Mol Microbiol. 2015;97: 229–43. doi: 10.1111/mmi.13029. pmid:25869931
[4]  Dawid S, Roche AM, Weiser JN. The blp bacteriocins of Streptococcus pneumoniae mediate intraspecies competition both in vitro and in vivo. Infect Immun. 2007;75: 443–451. doi: 10.1128/IAI.01775-05. pmid:17074857
[5]  de Saizieu A, Gardès C, Flint N, Wagner C, Kamber M, Mitchell TJ, et al. Microarray-based identification of a novel Streptococcus pneumoniae regulon controlled by an autoinduced peptide. J Bacteriol. 2000;182: 4696–4703. doi: 10.1128/JB.182.17.4696–4703.2000. pmid:10940007
[6]  Reichmann P, Hakenbeck R. Allelic variation in a peptide-inducible two-component system of Streptococcus pneumoniae. FEMS Microbiol Lett. 2000;190: 231–236. doi: 10.1111/j.1574-6968.2000.tb09291.x. pmid:11034284
[7]  Son MR, Shchepetov M, Adrian PV, Madhi SA, de Gouveia L, von Gottberg A, et al. Conserved mutations in the pneumococcal bacteriocin transporter gene, blpA, result in a complex population consisting of producers and cheaters. MBio. 2011;2. doi: 10.1128/mBio.00179-11.
[8]  Lange R, Wagner C, de Saizieu A, Flint N, Molnos J, Stieger M, et al. Domain organization and molecular characterization of 13 two-component systems identified by genome sequencing of Streptococcus pneumoniae. Gene. 1999;237: 223–234. doi: 10.1016/S0378-1119(99)00266-8. pmid:10524254
[9]  Pinchas MD, LaCross NC, Dawid S. An electrostatic interaction between BlpC and BlpH dictates pheromone specificity in the control of bacteriocin production and immunity in Streptococcus pneumoniae. J Bacteriol. 2015;197: 1236–1248. doi: 10.1128/JB.02432-14. pmid:25622617
[10]  Kochan TJ, Dawid S. The HtrA protease of Streptococcus pneumoniae controls density-dependent stimulation of the bacteriocin blp locus via disruption of pheromone secretion. J Bacteriol. 2013;195: 1561–1572. doi: 10.1128/JB.01964-12. pmid:23354751
[11]  Bogaardt C, van Tonder AJ, Brueggemann AB. Genomic analyses of pneumococci reveal a wide diversity of bacteriocins–including pneumocyclicin, a novel circular bacteriocin. BMC Genomics. 2015;16: 554. doi: 10.1186/s12864-015-1729-4. pmid:26215050
[12]  Lux T, Nuhn M, Hakenbeck R, Reichmann P. Diversity of bacteriocins and activity spectrum in Streptococcus pneumoniae. J Bacteriol. 2007;189: 7741–7751. doi: 10.1128/JB.00474-07. pmid:17704229
[13]  Dagkessamanskaia A, Moscoso M, Hénard V, Guiral S, Overweg K, Reuter M, et al. Interconnection of competence, stress and CiaR regulons in Streptococcus pneumoniae: competence triggers stationary phase autolysis of ciaR mutant cells. Mol Microbiol. 2004;51: 1071–1086. doi: 10.1111/j.1365-2958.2003.03892.x. pmid:14763981
[14]  Charpentier X, Polard P, Claverys J-P. Induction of competence for genetic transformation by antibiotics: convergent evolution of stress responses in distant bacterial species lacking SOS? Curr Opin Microbiol. 2012;15: 570–576. doi: 10.1016/j.mib.2012.08.001. pmid:22910199
[15]  Prudhomme M, Attaiech L, Sanchez G, Martin B, Claverys J-P. Antibiotic stress induces genetic transformability in the human pathogen Streptococcus pneumoniae. Science. 2006;313: 89–92. doi: 10.1126/science.1127912. pmid:16825569
[16]  Slager J, Kjos M, Attaiech L, Veening J-W. Antibiotic-induced replication stress triggers bacterial competence by increasing gene dosage near the origin. Cell. 2014;157: 395–406. doi: 10.1016/j.cell.2014.01.068. pmid:24725406
[17]  Stevens KE, Chang D, Zwack EE, Sebert ME. Competence in Streptococcus pneumoniae is regulated by the rate of ribosomal decoding errors. MBio. 2011;2. doi: 10.1128/mBio.00071-11.
[18]  Brown NC. 6-(p-hydroxyphenylazo)-uracil: a selective inhibitor of host DNA replication in phage-infected Bacillus subtilis. Proc Natl Acad Sci USA. 1970;67: 1454–1461. pmid:4992015 doi: 10.1073/pnas.67.3.1454
[19]  Claverys J-P, Martin B, H?varstein LS. Competence-induced fratricide in streptococci. Mol Microbiol. 2007;64: 1423–1433. doi: 10.1111/j.1365-2958.2007.05757.x. pmid:17555432
[20]  Sorg RA, Kuipers OP, Veening J-W. Gene expression platform for synthetic biology in the human pathogen Streptococcus pneumoniae. ACS Synth Biol. 2015;4: 228–239. doi: 10.1021/sb500229s. pmid:24845455
[21]  Tomasz A, Mosser JL. On the nature of the pneumococcal activator substance. Proc Natl Acad Sci U S A. 1966;55: 58–66. pmid:4380138 doi: 10.1073/pnas.55.1.58
[22]  Knutsen E, Ween O, H?varstein LS. Two separate quorum-sensing systems upregulate transcription of the same ABC transporter in Streptococcus pneumoniae. J Bacteriol. 2004;186: 3078–3085. doi: 10.1128/JB.186.10.3078–3085.2004. pmid:15126469
[23]  Peterson SN, Sung CK, Cline R, Desai BV, Snesrud EC, Luo P, et al. Identification of competence pheromone responsive genes in Streptococcus pneumoniae by use of DNA microarrays. Mol Microbiol. 2004;51: 1051–1070. doi: 10.1046/j.1365-2958.2003.03907.x. pmid:14763980
[24]  Marks LR, Reddinger RM, Hakansson AP. High levels of genetic recombination during nasopharyngeal carriage and biofilm formation in Streptococcus pneumoniae. MBio. 2012;3: e00200–12. doi: 10.1128/mBio.00200-12. pmid:23015736
[25]  Chancey ST, Agrawal S, Schroeder MR, Farley MM, Tettelin H, Stephens DS. Composite mobile genetic elements disseminating macrolide resistance in Streptococcus pneumoniae. Front Microbiol. 2015;6: 26. doi: 10.3389/fmicb.2015.00026. pmid:25709602
[26]  Chewapreecha C, Harris SR, Croucher NJ, Turner C, Marttinen P, Cheng L, et al. Dense genomic sampling identifies highways of pneumococcal recombination. Nat Genet. 2014;46: 305–309. doi: 10.1038/ng.2895. pmid:24509479
[27]  Croucher NJ, Finkelstein JA, Pelton SI, Mitchell PK, Lee GM, Parkhill J, et al. Population genomics of post-vaccine changes in pneumococcal epidemiology. Nat Genet. 2013;45: 656–663. doi: 10.1038/ng.2625. pmid:23644493
[28]  Croucher NJ, Mitchell AM, Gould KA, Inverarity D, Barquist L, Feltwell T, et al. Dominant role of nucleotide substitution in the diversification of serotype 3 pneumococci over decades and during a single infection. PLoS Genet. 2013;9: e1003868. doi: 10.1371/journal.pgen.1003868. pmid:24130509
[29]  Croucher NJ, Harris SR, Fraser C, Quail MA, Burton J, van der Linden M, et al. Rapid pneumococcal evolution in response to clinical interventions. Science. 2011;331: 430–434. doi: 10.1126/science.1198545. pmid:21273480
[30]  Lunter G, Goodson M. Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads. Genome Res. 2011;21: 936–939. doi: 10.1101/gr.111120.110. pmid:20980556
[31]  Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26: 1641–1650. doi: 10.1093/molbev/msp077. pmid:19377059
[32]  Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28: 1647–1649. doi: 10.1093/bioinformatics/bts199. pmid:22543367
[33]  Pagel M, Meade A. BayesTraits v.2 [Internet]. 2013.
[34]  Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17: 754–755. pmid:11524383 doi: 10.1093/bioinformatics/17.8.754
[35]  Martin B, Garcia P, Castanié M-P, Claverys J-P. The recA gene of Streptococcus pneumoniae is part of a competence-induced operon and controls lysogenic induction. Mol Microbiol. 1995;15: 367–379. doi: 10.1111/j.1365-2958.1995.tb02250.x. pmid:7538190
[36]  Sambrook J. Molecular cloning: a laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2001.
[37]  Attaiech L, Minnen A, Kjos M, Gruber S, Veening J-W. The ParB-parS chromosome segregation system modulates competence development in Streptococcus pneumoniae. MBio. 2015;6: e00662–15. doi: 10.1128/mBio.00662-15. pmid:26126852
[38]  Eberhardt A, Wu LJ, Errington J, Vollmer W, Veening J-W. Cellular localization of choline-utilization proteins in Streptococcus pneumoniae using novel fluorescent reporter systems. Mol Microbiol. 2009;74: 395–408. doi: 10.1111/j.1365-2958.2009.06872.x. pmid:19737355
[39]  Overkamp W, Beilharz K, Detert Oude Weme R, Solopova A, Karsens H, Kovács áT, et al. Benchmarking various green fluorescent protein variants in Bacillus subtilis, Streptococcus pneumoniae, and Lactococcus lactis for live cell imaging. Appl Environ Microbiol. 2013;79: 6481–6490. doi: 10.1128/AEM.02033-13. pmid:23956387
[40]  McClure R, Balasubramanian D, Sun Y, Bobrovskyy M, Sumby P, Genco CA, et al. Computational analysis of bacterial RNA-Seq data. Nucl Acids Res. 2013;41: e140–e140. doi: 10.1093/nar/gkt444. pmid:23716638
[41]  Tjaden B. De novo assembly of bacterial transcriptomes from RNA-seq data. Genome Biol. 2015;16: 1. doi: 10.1186/s13059-014-0572-2. pmid:25583448
[42]  Chepelev I, Wei G, Tang Q, Zhao K. Detection of single nucleotide variations in expressed exons of the human genome using RNA-Seq. Nucleic Acids Res. 2009;37: e106. doi: 10.1093/nar/gkp507. pmid:19528076
[43]  Prudhomme M, Claverys J-P. There will be a light: the use of luc transcriptional fusions in living pneumococcal cells. The Molecular Biology of Streptococci. Horizon Scientific Press; 2005. pp. 519–524.
[44]  Kjos M, Veening J-W. Tracking of chromosome dynamics in live Streptococcus pneumoniae reveals that transcription promotes chromosome segregation. Mol Microbiol. 2014;91: 1088–1105. doi: 10.1111/mmi.12517. pmid:24417389
[45]  de Jong IG, Beilharz K, Kuipers OP, Veening J-W. Live cell imaging of Bacillus subtilis and Streptococcus pneumoniae using automated time-lapse microscopy. J Vis Exp. 2011;53: 3145. doi: 10.3791/3145. pmid:21841760

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133