全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Genomic Modifiers of Natural Killer Cells, Immune Responsiveness and Lymphoid Tissue Remodeling Together Increase Host Resistance to Viral Infection

DOI: 10.1371/journal.ppat.1005419

Full-Text   Cite this paper   Add to My Lib

Abstract:

The MHC class I Dk molecule supplies vital host resistance during murine cytomegalovirus (MCMV) infection. Natural killer (NK) cells expressing the Ly49G2 inhibitory receptor, which specifically binds Dk, are required to control viral spread. The extent of Dk-dependent host resistance, however, differs significantly amongst related strains of mice, C57L and MA/My. As a result, we predicted that relatively small-effect modifier genetic loci might together shape immune cell features, NK cell reactivity, and the host immune response to MCMV. A robust Dk-dependent genetic effect, however, has so far hindered attempts to identify additional host resistance factors. Thus, we applied genomic mapping strategies and multicolor flow cytometric analysis of immune cells in naive and virus-infected hosts to identify genetic modifiers of the host immune response to MCMV. We discovered and validated many quantitative trait loci (QTL); these were mapped to at least 19 positions on 16 chromosomes. Intriguingly, one newly discovered non-MHC locus (Cmv5) controlled splenic NK cell accrual, secondary lymphoid organ structure, and lymphoid follicle development during MCMV infection. We infer that Cmv5 aids host resistance to MCMV infection by expanding NK cells needed to preserve and protect essential tissue structural elements, to enhance lymphoid remodeling and to increase viral clearance in spleen.

References

[1]  Theiler M (1930) Susceptibility of White Mice to the Virus of Yellow Fever. Science 71: 367. doi: 10.1126/science.71.1840.367
[2]  Theiler M, Smith HH (1937) The Use of Yellow Fever Virus Modified by in Vitro Cultivation for Human Immunization. J Exp Med 65: 787–800. pmid:19870634 doi: 10.1084/jem.65.6.787
[3]  Sawyer WA, Lloyd W (1931) The Use of Mice in Tests of Immunity against Yellow Fever. J Exp Med 54: 533–555. pmid:19869938 doi: 10.1084/jem.54.4.533
[4]  Lynch CJ, Hughes TP (1936) The Inheritance of Susceptibility to Yellow Fever Encephalitis in Mice. Genetics 21: 104–112. pmid:17246785
[5]  Rasmussen AL, Okumura A, Ferris MT, Green R, Feldmann F, et al. (2014) Host genetic diversity enables Ebola hemorrhagic fever pathogenesis and resistance. Science 346: 987–991. doi: 10.1126/science.1259595. pmid:25359852
[6]  Chalmer JE, Mackenzie JS, Stanley NF (1977) Resistance to murine cytomegalovirus linked to the major histocompatibility complex of the mouse. J Gen Virol 37: 107–114. pmid:199700 doi: 10.1099/0022-1317-37-1-107
[7]  Grundy JE, Mackenzie JS, Stanley NF (1981) Influence of H-2 and non-H-2 genes on resistance to murine cytomegalovirus infection. Infect Immun 32: 277–286. pmid:6260682
[8]  Beutler B, Crozat K, Koziol JA, Georgel P (2005) Genetic dissection of innate immunity to infection: the mouse cytomegalovirus model. Curr Opin Immunol 17: 36–43. pmid:15653308 doi: 10.1016/j.coi.2004.11.004
[9]  Moresco EM, Beutler B (2011) Resisting viral infection: the gene by gene approach. Curr Opin Virol 1: 513–518. doi: 10.1016/j.coviro.2011.10.005. pmid:22440911
[10]  Marcinowski L, Tanguy M, Krmpotic A, Radle B, Lisnic VJ, et al. (2012) Degradation of cellular mir-27 by a novel, highly abundant viral transcript is important for efficient virus replication in vivo. PLoS Pathog 8: e1002510. doi: 10.1371/journal.ppat.1002510. pmid:22346748
[11]  Libri V, Helwak A, Miesen P, Santhakumar D, Borger JG, et al. (2012) Murine cytomegalovirus encodes a miR-27 inhibitor disguised as a target. Proc Natl Acad Sci U S A 109: 279–284. doi: 10.1073/pnas.1114204109. pmid:22184245
[12]  Thomas MF, Abdul-Wajid S, Panduro M, Babiarz JE, Rajaram M, et al. (2012) Eri1 regulates microRNA homeostasis and mouse lymphocyte development and antiviral function. Blood 120: 130–142. doi: 10.1182/blood-2011-11-394072. pmid:22613798
[13]  Zawislak CL, Beaulieu AM, Loeb GB, Karo J, Canner D, et al. (2013) Stage-specific regulation of natural killer cell homeostasis and response against viral infection by microRNA-155. Proc Natl Acad Sci U S A 110: 6967–6972. doi: 10.1073/pnas.1304410110. pmid:23572582
[14]  Andoniou CE, Sutton VR, Wikstrom ME, Fleming P, Thia KY, et al. (2014) A natural genetic variant of granzyme B confers lethality to a common viral infection. PLoS Pathog 10: e1004526. doi: 10.1371/journal.ppat.1004526. pmid:25502180
[15]  Fodil N, Langlais D, Moussa P, Boivin GA, Di Pietrantonio T, et al. (2014) Specific dysregulation of IFNgamma production by natural killer cells confers susceptibility to viral infection. PLoS Pathog 10: e1004511. doi: 10.1371/journal.ppat.1004511. pmid:25473962
[16]  Nabekura T, Girard JP, Lanier LL (2015) IL-33 Receptor ST2 Amplifies the Expansion of NK Cells and Enhances Host Defense during Mouse Cytomegalovirus Infection. J Immunol. doi: 10.4049/jimmunol.1500424
[17]  Brown MG, Dokun AO, Heusel JW, Smith HRC, Beckman DL, et al. (2001) Vital Involvement of a natural killer cell activation receptor in resistance to viral infection. Science 292: 934–937. pmid:11340207 doi: 10.1126/science.1060042
[18]  Lee SH, Girard S, Macina D, Busa M, Zafer A, et al. (2001) Susceptibility to mouse cytomegalovirus is associated with deletion of an activating natural killer cell receptor of the C-type lectin superfamily. Nature Genetics 28: 42–45. pmid:11326273 doi: 10.1038/ng0501-42
[19]  Daniels KA, Devora G, Lai WC, O'Donnell CL, Bennett M, et al. (2001) Murine Cytomegalovirus Is Regulated by a Discrete Subset of Natural Killer Cells Reactive with Monoclonal Antibody to Ly49H. J Exp Med 194: 29–44. pmid:11435470 doi: 10.1084/jem.194.1.29
[20]  Desrosiers M-P, Kielczewska A, Loredo-Osti J-C, Adam SG, Makrigiannis AP, et al. (2005) Epistasis between mouse Klra and major histocompatibility complex class I loci is associated with a new mechanism of natural killer cell-mediated innate resistance to cytomegalovirus infection. Nat Genet 37: 593–599. pmid:15895081 doi: 10.1038/ng1564
[21]  Adam SG, Caraux A, Fodil-Cornu N, Loredo-Osti JC, Lesjean-Pottier S, et al. (2006) Cmv4, a New Locus Linked to the NK Cell Gene Complex, Controls Innate Resistance to Cytomegalovirus in Wild-Derived Mice. J Immunol 176: 5478–5485. pmid:16622016 doi: 10.4049/jimmunol.176.9.5478
[22]  Kielczewska A, Pyzik M, Sun T, Krmpotic A, Lodoen MB, et al. (2009) Ly49P recognition of cytomegalovirus-infected cells expressing H2-Dk and CMV-encoded m04 correlates with the NK cell antiviral response. J Exp Med 206: 515–523. doi: 10.1084/jem.20080954. pmid:19255146
[23]  Prince J, Lundgren A, Stadnisky MD, Nash WT, Beeber A, et al. (2013) Multiparametric Analysis of Host Response to Murine Cytomegalovirus in MHC Class I-Disparate Mice Reveals Primacy of Dk-Licensed Ly49G2+ NK Cells in Viral Control. J Immunol. doi: 10.4049/jimmunol.1301388
[24]  Xie X, Stadnisky MD, Brown MG (2009) MHC class I Dk locus and Ly49G2+ NK cells confer H-2k resistance to murine cytomegalovirus. J Immunol 182: 7163–7171. doi: 10.4049/jimmunol.0803933. pmid:19454713
[25]  Xie X, Stadnisky MD, Coats ER, Ahmed Rahim MM, Lundgren A, et al. (2010) MHC class I D(k) expression in hematopoietic and nonhematopoietic cells confers natural killer cell resistance to murine cytomegalovirus. Proc Natl Acad Sci U S A 107: 8754–8759. doi: 10.1073/pnas.0913126107. pmid:20421478
[26]  Xie X, Dighe A, Clark P, Sabastian P, Buss S, et al. (2007) Deficient major histocompatibility complex-linked innate murine cytomegalovirus immunity in MA/My.L-H2b mice and viral downregulation of H-2k class I proteins. J Virol 81: 229–236 pmid:17050600. doi: 10.1128/jvi.00997-06
[27]  Nash WT, Teoh J, Wei H, Gamache A, Brown MG (2014) Know Thyself: NK-Cell Inhibitory Receptors Prompt Self-Tolerance, Education, and Viral Control. Front Immunol 5: 175. doi: 10.3389/fimmu.2014.00175. pmid:24795719
[28]  Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19: 889–890. pmid:12724300 doi: 10.1093/bioinformatics/btg112
[29]  Dighe A, Rodriguez M, Sabastian P, Xie X, McVoy MA, et al. (2005) Requisite H2k role in NK cell-mediated resistance in acute murine CMV infected MA/My mice. J Immunol 175: 6820–6828. pmid:16272339 doi: 10.4049/jimmunol.175.10.6820
[30]  Fodil-Cornu N, Loredo-Osti JC, Vidal SM (2011) NK cell receptor/H2-Dk-dependent host resistance to viral infection is quantitatively modulated by H2q inhibitory signals. PLoS Genet 7: e1001368. doi: 10.1371/journal.pgen.1001368. pmid:21533075
[31]  Stadnisky MD, Manichaikul A, Lundgren AG, Brown MG (2009) NK gene complex and chromosome 19 loci enhance MHC resistance to murine cytomegalovirus infection. Immunogenetics 61: 755–764. doi: 10.1007/s00251-009-0400-0. pmid:19820922
[32]  Lundgren A, Kim S, Stadnisky MD, Brown MG (2012) Rapid discrimination of MHC class I and killer cell lectin-like receptor allele variants by high-resolution melt analysis. Immunogenetics 64: 633–640. doi: 10.1007/s00251-012-0630-4. pmid:22752191
[33]  Brodin P, Karre K, Hoglund P (2009) NK cell education: not an on-off switch but a tunable rheostat. Trends Immunol 30: 143–149. doi: 10.1016/j.it.2009.01.006. pmid:19282243
[34]  Johansson S, Johansson M, Rosmaraki E, Vahlne G, Mehr R, et al. (2005) Natural killer cell education in mice with single or multiple major histocompatibility complex class I molecules. J Exp Med 201: 1145–1155. pmid:15809355 doi: 10.1084/jem.20050167
[35]  Bekiaris V, Timoshenko O, Hou TZ, Toellner K, Shakib S, et al. (2008) Ly49H+ NK cells migrate to and protect splenic white pulp stroma from murine cytomegalovirus infection. J Immunol 180: 6768–6776. pmid:18453597 doi: 10.4049/jimmunol.180.10.6768
[36]  Stadnisky MD, Xie X, Coats ER, Bullock TN, Brown MG (2011) Self MHC class I-licensed NK cells enhance adaptive CD8 T-cell viral immunity. Blood 117: 5133–5141. doi: 10.1182/blood-2010-12-324632. pmid:21436069
[37]  Andrews DM, Scalzo AA, Yokoyama WM, Smyth MJ, Degli-Esposti MA (2003) Functional interactions between dendritic cells and NK cells during viral infection. Nat Immunol 23: 175–181. doi: 10.1038/ni880
[38]  Nguyen KB, Salazar-Mather TP, Dalod MY, Van Deusen JB, Wei X-q, et al. (2002) Coordinated and Distinct Roles for IFN-{alpha}{beta}, IL-12, and IL-15 Regulation of NK Cell Responses to Viral Infection. J Immunol 169: 4279–4287. pmid:12370359 doi: 10.4049/jimmunol.169.8.4279
[39]  Baranek T, Manh TP, Alexandre Y, Maqbool MA, Cabeza JZ, et al. (2012) Differential responses of immune cells to type I interferon contribute to host resistance to viral infection. Cell Host Microbe 12: 571–584. doi: 10.1016/j.chom.2012.09.002. pmid:23084923
[40]  Cui G, Hara T, Simmons S, Wagatsuma K, Abe A, et al. (2014) Characterization of the IL-15 niche in primary and secondary lymphoid organs in vivo. Proc Natl Acad Sci U S A 111: 1915–1920. doi: 10.1073/pnas.1318281111. pmid:24449915
[41]  Watowich SS, Liu YJ (2010) Mechanisms regulating dendritic cell specification and development. Immunol Rev 238: 76–92. doi: 10.1111/j.1600-065X.2010.00949.x. pmid:20969586
[42]  Eidenschenk C, Crozat K, Krebs P, Arens R, Popkin D, et al. (2010) Flt3 permits survival during infection by rendering dendritic cells competent to activate NK cells. Proc Natl Acad Sci U S A 107: 9759–9764. doi: 10.1073/pnas.1005186107. pmid:20457904
[43]  Cocita C, Guiton R, Bessou G, Chasson L, Boyron M, et al. (2015) Natural Killer Cell Sensing of Infected Cells Compensates for MyD88 Deficiency but Not IFN-I Activity in Resistance to Mouse Cytomegalovirus. PLoS Pathog 11: e1004897. doi: 10.1371/journal.ppat.1004897. pmid:25954804
[44]  Boivin GA, Pothlichet J, Skamene E, Brown EG, Loredo-Osti JC, et al. (2012) Mapping of clinical and expression quantitative trait loci in a sex-dependent effect of host susceptibility to mouse-adapted influenza H3N2/HK/1/68. J Immunol 188: 3949–3960. doi: 10.4049/jimmunol.1103320. pmid:22427645
[45]  Ford JW, McVicar DW (2009) TREM and TREM-like receptors in inflammation and disease. Curr Opin Immunol 21: 38–46. doi: 10.1016/j.coi.2009.01.009. pmid:19230638
[46]  Ito H, Hamerman JA (2012) TREM-2, triggering receptor expressed on myeloid cell-2, negatively regulates TLR responses in dendritic cells. Eur J Immunol 42: 176–185. doi: 10.1002/eji.201141679. pmid:21956652
[47]  Hamerman JA, Jarjoura JR, Humphrey MB, Nakamura MC, Seaman WE, et al. (2006) Cutting edge: inhibition of TLR and FcR responses in macrophages by triggering receptor expressed on myeloid cells (TREM)-2 and DAP12. J Immunol 177: 2051–2055. pmid:16887962 doi: 10.4049/jimmunol.177.4.2051
[48]  Takahashi K, Rochford CD, Neumann H (2005) Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med 201: 647–657. pmid:15728241 doi: 10.1084/jem.20041611
[49]  Takahashi K, Prinz M, Stagi M, Chechneva O, Neumann H (2007) TREM2-transduced myeloid precursors mediate nervous tissue debris clearance and facilitate recovery in an animal model of multiple sclerosis. PLoS Med 4: e124. pmid:17425404 doi: 10.1371/journal.pmed.0040124
[50]  Weber B, Schuster S, Zysset D, Rihs S, Dickgreber N, et al. (2014) TREM-1 deficiency can attenuate disease severity without affecting pathogen clearance. PLoS Pathog 10: e1003900. doi: 10.1371/journal.ppat.1003900. pmid:24453980
[51]  Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, et al. (2013) Variant of TREM2 associated with the risk of Alzheimer's disease. N Engl J Med 368: 107–116. doi: 10.1056/NEJMoa1211103. pmid:23150908
[52]  Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, et al. (2013) TREM2 variants in Alzheimer's disease. N Engl J Med 368: 117–127. doi: 10.1056/NEJMoa1211851. pmid:23150934
[53]  Sen SK, Boelte KC, Barb JJ, Joehanes R, Zhao X, et al. (2014) Integrative DNA, RNA, and Protein Evidence Connects TREML4 to Coronary Artery Calcification. Am J Hum Genet 95: 66–76. doi: 10.1016/j.ajhg.2014.06.003. pmid:24975946
[54]  Lucia HL, Booss J (1981) Immune stimulation, inflammation, and changes in hematopoiesis. Host responses of the murine spleen to infection with cytomegalovirus. Am J Pathol 104: 90–97. pmid:6266258
[55]  Jordan S, Ruzsics Z, Mitrovic M, Baranek T, Arapovic J, et al. (2013) Natural killer cells are required for extramedullary hematopoiesis following murine cytomegalovirus infection. Cell Host Microbe 13: 535–545. doi: 10.1016/j.chom.2013.04.007. pmid:23684305
[56]  Degli-Esposti MA, Smyth MJ (2005) Close encounters of different kinds: dendritic cells and NK cells take centre stage. Nat Rev Immunol 5: 112–124. pmid:15688039 doi: 10.1038/nri1549
[57]  Alexandre YO, Cocita CD, Ghilas S, Dalod M (2014) Deciphering the role of DC subsets in MCMV infection to better understand immune protection against viral infections. Front Microbiol 5: 378. doi: 10.3389/fmicb.2014.00378. pmid:25120535
[58]  Lang PA, Lang KS, Xu HC, Grusdat M, Parish IA, et al. (2012) Natural killer cell activation enhances immune pathology and promotes chronic infection by limiting CD8+ T-cell immunity. Proc Natl Acad Sci U S A 109: 1210–1215. doi: 10.1073/pnas.1118834109. pmid:22167808
[59]  Waggoner SN, Cornberg M, Selin LK, Welsh RM (2012) Natural killer cells act as rheostats modulating antiviral T cells. Nature 481: 394–398. doi: 10.1038/nature10624
[60]  Xu HC, Grusdat M, Pandyra AA, Polz R, Huang J, et al. (2014) Type I interferon protects antiviral CD8(+) T cells from NK cell cytotoxicity. Immunity 40: 949–960. doi: 10.1016/j.immuni.2014.05.004. pmid:24909887
[61]  Crouse J, Bedenikovic G, Wiesel M, Ibberson M, Xenarios I, et al. (2014) Type I Interferons Protect T Cells against NK Cell Attack Mediated by the Activating Receptor NCR1. Immunity 40: 961–973. doi: 10.1016/j.immuni.2014.05.003. pmid:24909889
[62]  Schuster IS, Wikstrom ME, Brizard G, Coudert JD, Estcourt MJ, et al. (2014) TRAIL+ NK cells control CD4+ T cell responses during chronic viral infection to limit autoimmunity. Immunity 41: 646–656. doi: 10.1016/j.immuni.2014.09.013. pmid:25367576
[63]  Andrews DM, Estcourt MJ, Andoniou CE, Wikstrom ME, Khong A, et al. (2010) Innate immunity defines the capacity of antiviral T cells to limit persistent infection. J Exp Med 207: 1333–1343. doi: 10.1084/jem.20091193. pmid:20513749
[64]  Rydyznski C, Daniels KA, Karmele EP, Brooks TR, Mahl SE, et al. (2015) Generation of cellular immune memory and B-cell immunity is impaired by natural killer cells. Nat Commun 6: 6375. doi: 10.1038/ncomms7375. pmid:25721802
[65]  Cook KD, Kline HC, Whitmire JK (2015) NK cells inhibit humoral immunity by reducing the abundance of CD4+ T follicular helper cells during a chronic virus infection. J Leukoc Biol. doi: 10.1189/jlb.4hi1214-594r
[66]  Wei H, Nash WT, Makrigiannis AP, Brown MG (2014) Impaired NK-cell education diminishes resistance to murine CMV infection. Eur J Immunol 44: 3273–3282. doi: 10.1002/eji.201444800. pmid:25187217
[67]  Carroll VA, Lundgren A, Wei H, Sainz S, Tung KS, et al. (2012) Natural killer cells regulate murine cytomegalovirus-induced sialadenitis and salivary gland disease. J Virol 86: 2132–2142. doi: 10.1128/JVI.06898-11. pmid:22156514
[68]  Wheat RL, Clark PY, Brown MG (2003) Quantitative measurement of infectious murine cytomegalovirus genomes in real-time PCR. J Virol Meth 112: 107–113. doi: 10.1016/s0166-0934(03)00197-6
[69]  Jung H, Hsiung B, Pestal K, Procyk E, Raulet DH (2012) RAE-1 ligands for the NKG2D receptor are regulated by E2F transcription factors, which control cell cycle entry. J Exp Med 209: 2409–2422. doi: 10.1084/jem.20120565. pmid:23166357
[70]  Ciccia F, Giardina A, Rizzo A, Guggino G, Cipriani P, et al. (2012) Rituximab modulates the expression of IL-22 in the salivary glands of patients with primary Sjogren's syndrome. Ann Rheum Dis. doi: 10.1136/annrheumdis-2012-202754
[71]  Liu Q, Smith CW, Zhang W, Burns AR, Li Z (2012) NK cells modulate the inflammatory response to corneal epithelial abrasion and thereby support wound healing. Am J Pathol 181: 452–462. doi: 10.1016/j.ajpath.2012.04.010. pmid:22728064

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133