Lassa virus is an enveloped, bi-segmented RNA virus and the most prevalent and fatal of all Old World arenaviruses. Virus entry into the host cell is mediated by a tripartite surface spike complex, which is composed of two viral glycoprotein subunits, GP1 and GP2, and the stable signal peptide. Of these, GP1 binds to cellular receptors and GP2 catalyzes fusion between the viral envelope and the host cell membrane during endocytosis. The molecular structure of the spike and conformational rearrangements induced by low pH, prior to fusion, remain poorly understood. Here, we analyzed the three-dimensional ultrastructure of Lassa virus using electron cryotomography. Sub-tomogram averaging yielded a structure of the glycoprotein spike at 14-? resolution. The spikes are trimeric, cover the virion envelope, and connect to the underlying matrix. Structural changes to the spike, following acidification, support a viral entry mechanism dependent on binding to the lysosome-resident receptor LAMP1 and further dissociation of the membrane-distal GP1 subunits.
References
[1]
McCormick JB, King IJ, Webb PA, Johnson KM, O'Sullivan R, Smith ES, et al. A case-control study of the clinical diagnosis and course of Lassa fever. J Infect Dis. 1987;155: 445–455. pmid:3805772 doi: 10.1093/infdis/155.3.445
[2]
Eichler R, Lenz O, Strecker T, Garten W. Signal peptide of Lassa virus glycoprotein GP-C exhibits an unusual length. FEBS Lett. 2003;538: 203–206. pmid:12633879 doi: 10.1016/s0014-5793(03)00160-1
[3]
Igonet S, Vaney M-C, Vonhrein C, Bricogne G, Stura EA, Hengartner H, et al. X-ray structure of the arenavirus glycoprotein GP2 in its postfusion hairpin conformation. P Natl Acad Sci Usa. 2011;108: 19967–19972. doi: 10.1073/pnas.1108910108
[4]
Lenz O, Meulen ter J, Klenk HD, Seidah NG, Garten W. The Lassa virus glycoprotein precursor GP-C is proteolytically processed by subtilase SKI-1/S1P. P Natl Acad Sci Usa. 2001;98: 12701–12705. doi: 10.1073/pnas.221447598
[5]
Parsy M-L, Harlos K, Huiskonen JT, Bowden TA. Crystal structure of Venezuelan hemorrhagic fever virus fusion glycoprotein reveals a class 1 postfusion architecture with extensive glycosylation. J Virol. 2013;87: 13070–13075. doi: 10.1128/JVI.02298-13. pmid:24049182
[6]
Eichler R, Lenz O, Strecker T, Eickmann M, Klenk HD, Garten W. Identification of Lassa virus glycoprotein signal peptide as a trans-acting maturation factor. EMBO Rep. 2003;4: 1084–1088. pmid:14555961 doi: 10.1038/sj.embor.7400002
[7]
York J, Romanowski V, Lu M, Nunberg JH. The signal peptide of the Junín arenavirus envelope glycoprotein is myristoylated and forms an essential subunit of the mature G1-G2 complex. J Virol. 2004;78: 10783–10792. pmid:15367645 doi: 10.1128/jvi.78.19.10783-10792.2004
[8]
Bederka LH, Bonhomme CJ, Ling EL, Buchmeier MJ. Arenavirus stable signal peptide is the keystone subunit for glycoprotein complex organization. MBio. 2014;5: e02063. doi: 10.1128/mBio.02063-14. pmid:25352624
[9]
Schlie K, Maisa A, Lennartz F, Str?her U, Garten W, Strecker T. Characterization of Lassa virus glycoprotein oligomerization and influence of cholesterol on virus replication. J Virol. 2010;84: 983–992. doi: 10.1128/JVI.02039-09. pmid:19889753
[10]
Cohen-Dvashi H, Cohen N, Israeli H, Diskin R. Molecular mechanism for LAMP1 recognition by Lassa Virus. J Virol. 2015. doi: 10.1128/jvi.00651-15
[11]
Jae LT, Raaben M, Herbert AS, Kuehne AI, Wirchnianski AS, Soh TK, et al. Lassa virus entry requires a trigger-induced receptor switch. Science. 2014;344: 1506–1510. doi: 10.1126/science.1252480. pmid:24970085
[12]
Bowden TA, Crispin M, Graham SC, Harvey DJ, Grimes JM, Jones EY, et al. Unusual molecular architecture of the machupo virus attachment glycoprotein. J Virol. 2009;83: 8259–8265. doi: 10.1128/JVI.00761-09. pmid:19494008
[13]
Abraham J, Corbett KD, Farzan M, Choe H, Harrison SC. Structural basis for receptor recognition by New World hemorrhagic fever arenaviruses. Nat Struct Mol Biol. 2010;17: 438–444. doi: 10.1038/nsmb.1772. pmid:20208545
[14]
Eschli B, Quirin K, Wepf A, Weber J, Zinkernagel R, Hengartner H. Identification of an N-terminal trimeric coiled-coil core within arenavirus glycoprotein 2 permits assignment to class I viral fusion proteins. J Virol. 2006;80: 5897–5907. pmid:16731928 doi: 10.1128/jvi.00008-06
[15]
Neuman BW, Adair BD, Burns JW, Milligan RA, Buchmeier MJ, Yeager M. Complementarity in the supramolecular design of arenaviruses and retroviruses revealed by electron cryomicroscopy and image analysis. J Virol. 2005;79: 3822–3830. pmid:15731275 doi: 10.1128/jvi.79.6.3822-3830.2005
[16]
Lyumkis D, Julien J-P, de Val N, Cupo A, Potter CS, Klasse P-J, et al. Cryo-EM structure of a fully glycosylated soluble cleaved HIV-1 envelope trimer. Science. 2013;342: 1484–1490. doi: 10.1126/science.1245627. pmid:24179160
[17]
Tran EEH, Simmons JA, Bartesaghi A, Shoemaker CJ, Nelson E, White JM, et al. Spatial localization of the ebola virus glycoprotein mucin-like domain determined by cryo-electron tomography. J Virol. 2014;88: 10958–10962. doi: 10.1128/JVI.00870-14. pmid:25008940
[18]
York J, Nunberg JH. Intersubunit interactions modulate pH-induced activation of membrane fusion by the Junin virus envelope glycoprotein GPC. J Virol. 2009;83: 4121–4126. doi: 10.1128/JVI.02410-08. pmid:19224989
[19]
Schrempf S, Froeschke M, Giroglou T, Laer von D, Dobberstein B. Signal peptide requirements for lymphocytic choriomeningitis virus glycoprotein C maturation and virus infectivity. J Virol. 2007;81: 12515–12524. pmid:17804515 doi: 10.1128/jvi.01481-07
[20]
Eichler R, Lenz O, Strecker T, Eickmann M, Klenk HD, Garten W. Lassa virus glycoprotein signal peptide displays a novel topology with an extended endoplasmic reticulum luminal region. J Biol Chem. 2004;279: 12293–12299. pmid:14709548 doi: 10.1074/jbc.m312975200
[21]
Agnihothram SS, York J, Trahey M, Nunberg JH. Bitopic membrane topology of the stable signal peptide in the tripartite Junín virus GP-C envelope glycoprotein complex. J Virol. 2007;81: 4331–4337. pmid:17267481 doi: 10.1128/jvi.02779-06
[22]
Schlie K, Maisa A, Freiberg F, Groseth A, Strecker T, Garten W. Viral protein determinants of Lassa virus entry and release from polarized epithelial cells. J Virol. 2010;84: 3178–3188. doi: 10.1128/JVI.02240-09. pmid:20071570
[23]
Fehling SK, Lennartz F, Strecker T. Multifunctional nature of the arenavirus RING finger protein Z. Viruses. 2012;4: 2973–3011. doi: 10.3390/v4112973. pmid:23202512
[24]
Capul AA, Perez M, Burke E, Kunz S, Buchmeier MJ, la Torre de JC. Arenavirus Z-glycoprotein association requires Z myristoylation but not functional RING or late domains. J Virol. 2007;81: 9451–9460. pmid:17581989 doi: 10.1128/jvi.00499-07
[25]
Cao W, Henry MD, Borrow P, Yamada H, Elder JH, Ravkov EV, et al. Identification of alpha-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science. 1998;282: 2079–2081. pmid:9851928 doi: 10.1126/science.282.5396.2079
[26]
Shimojima M, Str?her U, Ebihara H, Feldmann H, Kawaoka Y. Identification of cell surface molecules involved in dystroglycan-independent Lassa virus cell entry. J Virol. 2012;86: 2067–2078. doi: 10.1128/JVI.06451-11. pmid:22156524
[27]
Goncalves A-R, Moraz M-L, Pasquato A, Helenius A, Lozach P-Y, Kunz S. Role of DC-SIGN in Lassa virus entry into human dendritic cells. J Virol. 2013;87: 11504–11515. doi: 10.1128/JVI.01893-13. pmid:23966408
[28]
Klewitz C, Klenk HD, Meulen ter J. Amino acids from both N-terminal hydrophobic regions of the Lassa virus envelope glycoprotein GP-2 are critical for pH-dependent membrane fusion and infectivity. J Gen Virol. 2007;88: 2320–2328. pmid:17622638 doi: 10.1099/vir.0.82950-0
[29]
Wilke S, Krausze J, Büssow K. Crystal structure of the conserved domain of the DC lysosomal associated membrane protein: implications for the lysosomal glycocalyx. BMC Biol. 2012;10: 62. doi: 10.1186/1741-7007-10-62. pmid:22809326
[30]
Bowden TA, Jones EY, Stuart DI. Cells under siege: viral glycoprotein interactions at the cell surface. J Struct Biol. 2011;175: 120–126. doi: 10.1016/j.jsb.2011.03.016. pmid:21440638
[31]
Pasqual G, Rojek JM, Masin M, Chatton J-Y, Kunz S. Old world arenaviruses enter the host cell via the multivesicular body and depend on the endosomal sorting complex required for transport. PLoS Pathog. 2011;7: e1002232. doi: 10.1371/journal.ppat.1002232. pmid:21931550
[32]
Branco LM, Grove JN, Geske FJ, Boisen ML, Muncy IJ, Magliato SA, et al. Lassa virus-like particles displaying all major immunological determinants as a vaccine candidate for Lassa hemorrhagic fever. Virol J. 2010;7: 279. doi: 10.1186/1743-422X-7-279. pmid:20961433
[33]
Voss JE, Vaney M-C, Duquerroy S, Vonrhein C, Girard-Blanc C, Crublet E, et al. Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. Nature. 2010;468: 709–712. doi: 10.1038/nature09555. pmid:21124458
[34]
Messina EL, York J, Nunberg JH. Dissection of the role of the stable signal peptide of the arenavirus envelope glycoprotein in membrane fusion. J Virol. 2012;86: 6138–6145. doi: 10.1128/JVI.07241-11. pmid:22438561
Hetzel U, Sironen T, Laurinm?ki P, Liljeroos L, Patjas A, Henttonen H, et al. Isolation, identification, and characterization of novel arenaviruses, the etiological agents of boid inclusion body disease. J Virol. 2013;87: 10918–10935. doi: 10.1128/JVI.01123-13. pmid:23926354
[37]
Gallaher WR, DiSimone C, Buchmeier MJ. The viral transmembrane superfamily: possible divergence of Arenavirus and Filovirus glycoproteins from a common RNA virus ancestor. BMC Microbiol. 2001;1: 1. pmid:11208257
[38]
Lenz O, Meulen ter J, Feldmann H, Klenk HD, Garten W. Identification of a novel consensus sequence at the cleavage site of the Lassa virus glycoprotein. J Virol. 2000;74: 11418–11421. pmid:11070044 doi: 10.1128/jvi.74.23.11418-11421.2000
[39]
Aricescu AR, Lu W, Jones EY. A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr D Biol Crystallogr. 2006;62: 1243–1250. pmid:17001101 doi: 10.1107/s0907444906029799
[40]
Elbein AD, Tropea JE, Mitchell M, Kaushal GP. Kifunensine, a potent inhibitor of the glycoprotein processing mannosidase I. J Biol Chem. 1990;265: 15599–15605. pmid:2144287
[41]
Tivol WF, Briegel A, Jensen GJ. An improved cryogen for plunge freezing. Microsc Microanal. 2008;14: 375–379. doi: 10.1017/S1431927608080781. pmid:18793481
[42]
Mastronarde DN. Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol. 2005;152: 36–51. 7 pmid:16182563 doi: 10.1016/j.jsb.2005.07.007
[43]
Li X, Mooney P, Zheng S, Booth CR, Braunfeld MB, Gubbens S, et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat Methods. 2013;10: 584–590. doi: 10.1038/nmeth.2472. pmid:23644547
[44]
Kremer J, Mastronarde D, McIntosh J. Computer visualization of three-dimensional image data using IMOD. J Struct Biol. 1996;116: 71–76. pmid:8742726 doi: 10.1006/jsbi.1996.0013
[45]
Xiong Q, Morphew MK, Schwartz CL, Hoenger AH, Mastronarde DN. CTF determination and correction for low dose tomographic tilt series. J Struct Biol. 2009;168: 378–387. doi: 10.1016/j.jsb.2009.08.016. pmid:19732834
[46]
Casta?o-Díez D, Kudryashev M, Arheit M, Stahlberg H. Dynamo: a flexible, user-friendly development tool for subtomogram averaging of cryo-EM data in high-performance computing environments. J Struct Biol. 2012;178: 139–151. doi: 10.1016/j.jsb.2011.12.017. pmid:22245546
[47]
Heymann JB, Belnap DM. Bsoft: image processing and molecular modeling for electron microscopy. J Struct Biol. 2007;157: 3–18. pmid:17011211 doi: 10.1016/j.jsb.2006.06.006
[48]
Huiskonen JT, Hepojoki J, Laurinm?ki P, Vaheri A, Lankinen H, Butcher SJ, et al. Electron cryotomography of Tula hantavirus suggests a unique assembly paradigm for enveloped viruses. J Virol. 2010;84: 4889–4897. doi: 10.1128/JVI.00057-10. pmid:20219926
[49]
Bowden TA, Bitto D, McLees A, Yeromonahos C, Elliott RM, Huiskonen JT. Orthobunyavirus ultrastructure and the curious tripodal glycoprotein spike. PLoS Pathog. 2013;9: e1003374. doi: 10.1371/journal.ppat.1003374. pmid:23696739
[50]
Huiskonen JT, Parsy M-L, Li S, Bitto D, Renner M, Bowden TA. Averaging of Viral Envelope Glycoprotein Spikes from Electron Cryotomography Reconstructions using Jsubtomo. J Vis Exp. 2014. doi: 10.3791/51714
Rosenthal PB, Henderson R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J Mol Biol. 2003;333: 721–745. pmid:14568533 doi: 10.1016/j.jmb.2003.07.013
[53]
Pintilie GD, Zhang J, Goddard TD, Chiu W, Gossard DC. Quantitative analysis of cryo-EM density map segmentation by watershed and scale-space filtering, and fitting of structures by alignment to regions. J Struct Biol. 2010;170: 427–438. doi: 10.1016/j.jsb.2010.03.007. pmid:20338243
[54]
Goddard TD, Huang CC, Ferrin TE. Visualizing density maps with UCSF Chimera. J Struct Biol. 2007;157: 281–287. pmid:16963278 doi: 10.1016/j.jsb.2006.06.010