[1] | Hoare CA. The trypanosomes of mammals. A zoological monograph. Oxford, Edinburgh: Blackwell Scientific Publications; 1972.
|
[2] | Auty H, Anderson NE, Picozzi K, Lembo T, Mubanga J, Hoare R, et al. Trypanosome diversity in wildlife species from the serengeti and Luangwa Valley ecosystems. PLoS Negl Trop Dis. 2012;6: e1828. doi: 10.1371/journal.pntd.0001828. pmid:23094115
|
[3] | Duke HL. On Trypanosoma brucei, T. rhodesiense and T. gambiense and their Ability to Infect Man. Parasitology. 1935;27: 46–67. doi: 10.1017/S0031182000014943.
|
[4] | Lai D-H, Hashimi H, Lun Z-R, Ayala FJ, Luke? J. Adaptations of Trypanosoma brucei to gradual loss of kinetoplast DNA: Trypanosoma equiperdum and Trypanosoma evansi are petite mutants of T. brucei. Proc Natl Acad Sci. 2008;105: 1999–2004. doi: 10.1073/pnas.0711799105. pmid:18245376
|
[5] | Desquesnes M, Holzmuller P, Lai D-H, Dargantes A, Lun Z-R, Jittaplapong S. Trypanosoma evansi and surra: a review and perspectives on origin, history, distribution, taxonomy, morphology, hosts, and pathogenic effects. BioMed Res Int. 2013;2013: 194176. doi: 10.1155/2013/194176. pmid:24024184
|
[6] | Borst P, Ulbert S. Control of VSG gene expression sites. Mol Biochem Parasitol. 2001;114: 17–27. pmid:11356510 doi: 10.1016/s0166-6851(01)00243-2
|
[7] | McCulloch R. Antigenic variation in African trypanosomes: monitoring progress. Trends Parasitol. 2004;20: 117–121. doi: 10.1016/j.pt.2003.12.004. pmid:15036032
|
[8] | Matthews KR. The developmental cell biology of Trypanosoma brucei. J Cell Sci. 2005;118: 283–290. doi: 10.1242/jcs.01649. pmid:15654017
|
[9] | Engstler M, Thilo L, Weise F, Grünfelder CG, Schwarz H, Boshart M, et al. Kinetics of endocytosis and recycling of the GPI-anchored variant surface glycoprotein in Trypanosoma brucei. J Cell Sci. 2004;117: 1105–1115. doi: 10.1242/jcs.00938. pmid:14996937
|
[10] | Natesan SKA, Peacock L, Matthews K, Gibson W, Field MC. Activation of endocytosis as an adaptation to the mammalian host by trypanosomes. Eukaryot Cell. 2007;6: 2029–2037. doi: 10.1128/EC.00213-07. pmid:17905918
|
[11] | Engstler M, Pfohl T, Herminghaus S, Boshart M, Wiegertjes G, Heddergott N, et al. Hydrodynamic flow-mediated protein sorting on the cell surface of trypanosomes. Cell. 2007;131: 505–515. doi: 10.1016/j.cell.2007.08.046. pmid:17981118
|
[12] | Overath P, Engstler M. Endocytosis, membrane recycling and sorting of GPI-anchored proteins: Trypanosoma brucei as a model system. Mol Microbiol. 2004;53: 735–744. doi: 10.1111/j.1365-2958.2004.04224.x. pmid:15255888
|
[13] | Field MC, Carrington M. Intracellular membrane transport systems in Trypanosoma brucei. Traffic Cph Den. 2004;5: 905–913. doi: 10.1111/j.1600-0854.2004.00234.x.
|
[14] | Jeffries TR, Morgan GW, Field MC. A developmentally regulated rab11 homologue in Trypanosoma brucei is involved in recycling processes. J Cell Sci. 2001;114: 2617–2626. pmid:11683389
|
[15] | Morgan GW, Allen CL, Jeffries TR, Hollinshead M, Field MC. Developmental and morphological regulation of clathrin-mediated endocytosis in Trypanosoma brucei. J Cell Sci. 2001;114: 2605–2615. pmid:11683388
|
[16] | Allen CL, Goulding D, Field MC. Clathrin-mediated endocytosis is essential in Trypanosoma brucei. EMBO J. 2003;22: 4991–5002. doi: 10.1093/emboj/cdg481. pmid:14517238
|
[17] | Grünfelder CG, Engstler M, Weise F, Schwarz H, Stierhof Y-D, Boshart M, et al. Accumulation of a GPI-anchored protein at the cell surface requires sorting at multiple intracellular levels. Traffic Cph Den. 2002;3: 547–559. doi: 10.1034/j.1600-0854.2002.30805.x
|
[18] | Adung’a VO, Gadelha C, Field MC. Proteomic analysis of clathrin interactions in trypanosomes reveals dynamic evolution of endocytosis. Traffic Cph Den. 2013;14: 440–457. doi: 10.1111/tra.12040.
|
[19] | Broadhead R, Dawe HR, Farr H, Griffiths S, Hart SR, Portman N, et al. Flagellar motility is required for the viability of the bloodstream trypanosome. Nature. 2006;440: 224–227. doi: 10.1038/nature04541. pmid:16525475
|
[20] | Ralston KS, Lerner AG, Diener DR, Hill KL. Flagellar motility contributes to cytokinesis in Trypanosoma brucei and is modulated by an evolutionarily conserved dynein regulatory system. Eukaryot Cell. 2006;5: 696–711. doi: 10.1128/EC.5.4.696–711.2006. pmid:16607017
|
[21] | Griffiths S, Portman N, Taylor PR, Gordon S, Ginger ML, Gull K. RNA interference mutant induction in vivo demonstrates the essential nature of trypanosome flagellar function during mammalian infection. Eukaryot Cell. 2007;6: 1248–1250. doi: 10.1128/EC.00110-07. pmid:17513568
|
[22] | Uppaluri S, Nagler J, Stellamanns E, Heddergott N, Herminghaus S, Engstler M, et al. Impact of microscopic motility on the swimming behavior of parasites: straighter trypanosomes are more directional. PLoS Comput Biol. 2011;7: e1002058. doi: 10.1371/journal.pcbi.1002058. pmid:21698122
|
[23] | Wei?e S, Heddergott N, Heydt M, Pfl?sterer D, Maier T, Haraszti T, et al. A quantitative 3D motility analysis of Trypanosoma brucei by use of digital in-line holographic microscopy. PloS One. 2012;7: e37296. doi: 10.1371/journal.pone.0037296. pmid:22629379
|
[24] | Heddergott N, Krüger T, Babu SB, Wei A, Stellamanns E, Uppaluri S, et al. Trypanosome motion represents an adaptation to the crowded environment of the vertebrate bloodstream. PLoS Pathog. 2012;8: e1003023. doi: 10.1371/journal.ppat.1003023. pmid:23166495
|
[25] | Purcell EM. Life at low Reynolds number. Am J Phys. 1977;45: 3. doi: 10.1119/1.10903.
|
[26] | Meijering E, Dzyubachyk O, Smal I. Chapter nine—Methods for Cell and Particle Tracking. In: conn PM, editor. Methods in Enzymology. Academic Press; 2012. pp. 183–200.
|
[27] | Shapiro SZ, Naessens J, Liesegang B, Moloo SK, Magondu J. Analysis by flow cytometry of DNA synthesis during the life cycle of African trypanosomes. Acta Trop. 1984;41: 313–323. pmid:6152113
|
[28] | Vickerman K. On the surface coat and flagellar adhesion in trypanosomes. J Cell Sci. 1969;5: 163–193. pmid:5353653
|
[29] | Walker PJ, Walker JC. Movement of Trypanosomes flagella. JProtozool. 1963;10: 109.
|
[30] | Holwill MEJ. The Motion of Strigomonas Oncopelti. J Exp Biol. 1965;42: 125–137.
|
[31] | Branche C, Kohl L, Toutirais G, Buisson J, Cosson J, Bastin P. Conserved and specific functions of axoneme components in trypanosome motility. J Cell Sci. 2006;119: 3443–3455. doi: 10.1242/jcs.03078. pmid:16882690
|
[32] | Baron DM, Kabututu ZP, Hill KL. Stuck in reverse: loss of LC1 in Trypanosoma brucei disrupts outer dynein arms and leads to reverse flagellar beat and backward movement. J Cell Sci. 2007;120: 1513–1520. doi: 10.1242/jcs.004846. pmid:17405810
|
[33] | Vickerman K. Developmental cycles and biology of pathogenic trypanosomes. Br Med Bull. 1985;41: 105–114. pmid:3928017
|
[34] | Vickerman K, Tetley L, Hendry KA, Turner CM. Biology of African trypanosomes in the tsetse fly. Biol Cell Auspices Eur Cell Biol Organ. 1988;64: 109–119. doi: 10.1016/0248-4900(88)90070-6
|
[35] | Krüger T, Engstler M. Flagellar motility in eukaryotic human parasites. Semin Cell Dev Biol. 2015;46: 113–127. doi: 10.1016/j.semcdb.2015.10.034. pmid:26523344
|
[36] | Alizadehrad D, Krüger T, Engstler M, Stark H. Simulating the Complex Cell Design of Trypanosoma brucei and Its Motility. PLoS Comput Biol. 2015;11. doi: 10.1371/journal.pcbi.1003967.
|
[37] | Chamond N, Cosson A, Blom-Potar MC, Jouvion G, D’Archivio S, Medina M, et al. Trypanosoma vivax infections: pushing ahead with mouse models for the study of Nagana. I. Parasitological, hematological and pathological parameters. PLoS Negl Trop Dis. 2010;4: e792. doi: 10.1371/journal.pntd.0000792. pmid:20706595
|
[38] | Clarkson MJ, Awan MA. The immune response of sheep to Trypanosoma vivax. Ann Trop Med Parasitol. 1969;63: 515–527. pmid:4988736
|
[39] | Ikede BO, Losos GJ. Hereditary transmission of Trypanosoma vivax in sheep. Br Vet J. 1972;128: i–ii. pmid:5062161
|
[40] | van den Ingh TS, Zwart D, Schotman AJ, van Miert AS, Veenendaal GH. The pathology and pathogenesis of Trypanosoma vivax infection in the goat. Res Vet Sci. 1976;21: 264–270. pmid:1025633 doi: 10.1016/0304-4017(76)90082-0
|
[41] | Gardiner PR, Wilson AJ. Trypanosoma (Duttonefla) vivax. Parasitol Today Pers Ed. 1987;3: 49–52. doi: 10.1016/0169-4758(87)90213-4
|
[42] | Abenga JN. A comparative pathology of Trypanosoma brucei infections. Glob Adv Res J Med Med Sci. 2014;3: 390–399.
|
[43] | Eyob E, Matios L. Review on camel trypanosomosis (surra) due to Trypanosoma evansi: Epidemiology and host response. Journal of Veterinary Medicine and Animal Health. 2013; 334–43.
|
[44] | Losos GJ, Gwamaka G. Histological examination of wild animals naturally infected with pathogenic African trypanosomes. Acta Trop. 1973;30: 57–63. pmid:4144958
|
[45] | Losos GJ, Ikede BO. Review of Pathology of Diseases in Domestic and Laboratory Animals Caused by Trypanosoma congolense, T. vivax, T. brucei, T. rhodesiense and T. gambiense. Vet Pathol. 1972;9 (1 Suppl): 1–79. doi: 10.1177/030098587200901s01
|
[46] | Yorke W. On the variations of the haemolytic complement in experimental trypanosomiasis. Ann Trop Med Parasit. 1911;4: 385.
|
[47] | Goodwin LG. Pathological effects of Trypanosoma brucei on small blood vessels in rabbit ear-chambers. Trans R Soc Trop Med Hyg. 1971;65: 82–88. pmid:5092433 doi: 10.1016/0035-9203(71)90189-1
|
[48] | Goodwin LG. The pathology of African trypanosomiasis. Trans R Soc Trop Med Hyg. 1970;64: 797–817. pmid:5495630
|
[49] | Losos GJ, Paris J, Wilson AJ, Dar FK. Distribution of Trypanosoma congolense in tissues of cattle. Trans R Soc Trop Med Hyg. 1973;67: 278. doi: 10.1016/0035-9203(73)90193-4
|
[50] | Valli VE, Forsberg CM, Robinson GA. The pathogenesis of Trypanosoma congolense infection in calves. I. Clinical observations and gross pathological changes. Vet Pathol. 1978;15: 608–620. pmid:716157 doi: 10.1177/030098587801500504
|
[51] | Hemphill A, Ross CA. Flagellum-mediated adhesion of Trypanosoma congolense to bovine aorta endothelial cells. Parasitol Res. 1995;81: 412–420. pmid:7501641 doi: 10.1007/bf00931503
|
[52] | Geigy R, Kauffmann M. Sleeping sickness survey in the Serengeti area (Tanzania) 1971. I. Examination of large mammals for trypanosomes. Acta Trop. 1973;30: 12–23. pmid:4144952
|
[53] | Leeflang P, Buys J, Blotkamp C. Studies on Trypanosoma vivax: infectivity and serial maintenance of natural bovine isolates in mice. Int J Parasitol. 1976;6: 413–417. pmid:965146 doi: 10.1016/0020-7519(76)90027-8
|
[54] | Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9: 676–682. doi: 10.1038/nmeth.2019. pmid:22743772
|