全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Species-Specific Adaptations of Trypanosome Morphology and Motility to the Mammalian Host

DOI: 10.1371/journal.ppat.1005448

Full-Text   Cite this paper   Add to My Lib

Abstract:

African trypanosomes thrive in the bloodstream and tissue spaces of a wide range of mammalian hosts. Infections of cattle cause an enormous socio-economic burden in sub-Saharan Africa. A hallmark of the trypanosome lifestyle is the flagellate’s incessant motion. This work details the cell motility behavior of the four livestock-parasites Trypanosoma vivax, T. brucei, T. evansi and T. congolense. The trypanosomes feature distinct swimming patterns, speeds and flagellar wave frequencies, although the basic mechanism of flagellar propulsion is conserved, as is shown by extended single flagellar beat analyses. Three-dimensional analyses of the trypanosomes expose a high degree of dynamic pleomorphism, typified by the ‘cellular waveform’. This is a product of the flagellar oscillation, the chirality of the flagellum attachment and the stiffness of the trypanosome cell body. The waveforms are characteristic for each trypanosome species and are influenced by changes of the microenvironment, such as differences in viscosity and the presence of confining obstacles. The distinct cellular waveforms may be reflective of the actual anatomical niches the parasites populate within their mammalian host. T. vivax displays waveforms optimally aligned to the topology of the bloodstream, while the two subspecies T. brucei and T. evansi feature distinct cellular waveforms, both additionally adapted to motion in more confined environments such as tissue spaces. T. congolense reveals a small and stiff waveform, which makes these parasites weak swimmers and destined for cell adherence in low flow areas of the circulation. Thus, our experiments show that the differential dissemination and annidation of trypanosomes in their mammalian hosts may depend on the distinct swimming capabilities of the parasites.

References

[1]  Hoare CA. The trypanosomes of mammals. A zoological monograph. Oxford, Edinburgh: Blackwell Scientific Publications; 1972.
[2]  Auty H, Anderson NE, Picozzi K, Lembo T, Mubanga J, Hoare R, et al. Trypanosome diversity in wildlife species from the serengeti and Luangwa Valley ecosystems. PLoS Negl Trop Dis. 2012;6: e1828. doi: 10.1371/journal.pntd.0001828. pmid:23094115
[3]  Duke HL. On Trypanosoma brucei, T. rhodesiense and T. gambiense and their Ability to Infect Man. Parasitology. 1935;27: 46–67. doi: 10.1017/S0031182000014943.
[4]  Lai D-H, Hashimi H, Lun Z-R, Ayala FJ, Luke? J. Adaptations of Trypanosoma brucei to gradual loss of kinetoplast DNA: Trypanosoma equiperdum and Trypanosoma evansi are petite mutants of T. brucei. Proc Natl Acad Sci. 2008;105: 1999–2004. doi: 10.1073/pnas.0711799105. pmid:18245376
[5]  Desquesnes M, Holzmuller P, Lai D-H, Dargantes A, Lun Z-R, Jittaplapong S. Trypanosoma evansi and surra: a review and perspectives on origin, history, distribution, taxonomy, morphology, hosts, and pathogenic effects. BioMed Res Int. 2013;2013: 194176. doi: 10.1155/2013/194176. pmid:24024184
[6]  Borst P, Ulbert S. Control of VSG gene expression sites. Mol Biochem Parasitol. 2001;114: 17–27. pmid:11356510 doi: 10.1016/s0166-6851(01)00243-2
[7]  McCulloch R. Antigenic variation in African trypanosomes: monitoring progress. Trends Parasitol. 2004;20: 117–121. doi: 10.1016/j.pt.2003.12.004. pmid:15036032
[8]  Matthews KR. The developmental cell biology of Trypanosoma brucei. J Cell Sci. 2005;118: 283–290. doi: 10.1242/jcs.01649. pmid:15654017
[9]  Engstler M, Thilo L, Weise F, Grünfelder CG, Schwarz H, Boshart M, et al. Kinetics of endocytosis and recycling of the GPI-anchored variant surface glycoprotein in Trypanosoma brucei. J Cell Sci. 2004;117: 1105–1115. doi: 10.1242/jcs.00938. pmid:14996937
[10]  Natesan SKA, Peacock L, Matthews K, Gibson W, Field MC. Activation of endocytosis as an adaptation to the mammalian host by trypanosomes. Eukaryot Cell. 2007;6: 2029–2037. doi: 10.1128/EC.00213-07. pmid:17905918
[11]  Engstler M, Pfohl T, Herminghaus S, Boshart M, Wiegertjes G, Heddergott N, et al. Hydrodynamic flow-mediated protein sorting on the cell surface of trypanosomes. Cell. 2007;131: 505–515. doi: 10.1016/j.cell.2007.08.046. pmid:17981118
[12]  Overath P, Engstler M. Endocytosis, membrane recycling and sorting of GPI-anchored proteins: Trypanosoma brucei as a model system. Mol Microbiol. 2004;53: 735–744. doi: 10.1111/j.1365-2958.2004.04224.x. pmid:15255888
[13]  Field MC, Carrington M. Intracellular membrane transport systems in Trypanosoma brucei. Traffic Cph Den. 2004;5: 905–913. doi: 10.1111/j.1600-0854.2004.00234.x.
[14]  Jeffries TR, Morgan GW, Field MC. A developmentally regulated rab11 homologue in Trypanosoma brucei is involved in recycling processes. J Cell Sci. 2001;114: 2617–2626. pmid:11683389
[15]  Morgan GW, Allen CL, Jeffries TR, Hollinshead M, Field MC. Developmental and morphological regulation of clathrin-mediated endocytosis in Trypanosoma brucei. J Cell Sci. 2001;114: 2605–2615. pmid:11683388
[16]  Allen CL, Goulding D, Field MC. Clathrin-mediated endocytosis is essential in Trypanosoma brucei. EMBO J. 2003;22: 4991–5002. doi: 10.1093/emboj/cdg481. pmid:14517238
[17]  Grünfelder CG, Engstler M, Weise F, Schwarz H, Stierhof Y-D, Boshart M, et al. Accumulation of a GPI-anchored protein at the cell surface requires sorting at multiple intracellular levels. Traffic Cph Den. 2002;3: 547–559. doi: 10.1034/j.1600-0854.2002.30805.x
[18]  Adung’a VO, Gadelha C, Field MC. Proteomic analysis of clathrin interactions in trypanosomes reveals dynamic evolution of endocytosis. Traffic Cph Den. 2013;14: 440–457. doi: 10.1111/tra.12040.
[19]  Broadhead R, Dawe HR, Farr H, Griffiths S, Hart SR, Portman N, et al. Flagellar motility is required for the viability of the bloodstream trypanosome. Nature. 2006;440: 224–227. doi: 10.1038/nature04541. pmid:16525475
[20]  Ralston KS, Lerner AG, Diener DR, Hill KL. Flagellar motility contributes to cytokinesis in Trypanosoma brucei and is modulated by an evolutionarily conserved dynein regulatory system. Eukaryot Cell. 2006;5: 696–711. doi: 10.1128/EC.5.4.696–711.2006. pmid:16607017
[21]  Griffiths S, Portman N, Taylor PR, Gordon S, Ginger ML, Gull K. RNA interference mutant induction in vivo demonstrates the essential nature of trypanosome flagellar function during mammalian infection. Eukaryot Cell. 2007;6: 1248–1250. doi: 10.1128/EC.00110-07. pmid:17513568
[22]  Uppaluri S, Nagler J, Stellamanns E, Heddergott N, Herminghaus S, Engstler M, et al. Impact of microscopic motility on the swimming behavior of parasites: straighter trypanosomes are more directional. PLoS Comput Biol. 2011;7: e1002058. doi: 10.1371/journal.pcbi.1002058. pmid:21698122
[23]  Wei?e S, Heddergott N, Heydt M, Pfl?sterer D, Maier T, Haraszti T, et al. A quantitative 3D motility analysis of Trypanosoma brucei by use of digital in-line holographic microscopy. PloS One. 2012;7: e37296. doi: 10.1371/journal.pone.0037296. pmid:22629379
[24]  Heddergott N, Krüger T, Babu SB, Wei A, Stellamanns E, Uppaluri S, et al. Trypanosome motion represents an adaptation to the crowded environment of the vertebrate bloodstream. PLoS Pathog. 2012;8: e1003023. doi: 10.1371/journal.ppat.1003023. pmid:23166495
[25]  Purcell EM. Life at low Reynolds number. Am J Phys. 1977;45: 3. doi: 10.1119/1.10903.
[26]  Meijering E, Dzyubachyk O, Smal I. Chapter nine—Methods for Cell and Particle Tracking. In: conn PM, editor. Methods in Enzymology. Academic Press; 2012. pp. 183–200.
[27]  Shapiro SZ, Naessens J, Liesegang B, Moloo SK, Magondu J. Analysis by flow cytometry of DNA synthesis during the life cycle of African trypanosomes. Acta Trop. 1984;41: 313–323. pmid:6152113
[28]  Vickerman K. On the surface coat and flagellar adhesion in trypanosomes. J Cell Sci. 1969;5: 163–193. pmid:5353653
[29]  Walker PJ, Walker JC. Movement of Trypanosomes flagella. JProtozool. 1963;10: 109.
[30]  Holwill MEJ. The Motion of Strigomonas Oncopelti. J Exp Biol. 1965;42: 125–137.
[31]  Branche C, Kohl L, Toutirais G, Buisson J, Cosson J, Bastin P. Conserved and specific functions of axoneme components in trypanosome motility. J Cell Sci. 2006;119: 3443–3455. doi: 10.1242/jcs.03078. pmid:16882690
[32]  Baron DM, Kabututu ZP, Hill KL. Stuck in reverse: loss of LC1 in Trypanosoma brucei disrupts outer dynein arms and leads to reverse flagellar beat and backward movement. J Cell Sci. 2007;120: 1513–1520. doi: 10.1242/jcs.004846. pmid:17405810
[33]  Vickerman K. Developmental cycles and biology of pathogenic trypanosomes. Br Med Bull. 1985;41: 105–114. pmid:3928017
[34]  Vickerman K, Tetley L, Hendry KA, Turner CM. Biology of African trypanosomes in the tsetse fly. Biol Cell Auspices Eur Cell Biol Organ. 1988;64: 109–119. doi: 10.1016/0248-4900(88)90070-6
[35]  Krüger T, Engstler M. Flagellar motility in eukaryotic human parasites. Semin Cell Dev Biol. 2015;46: 113–127. doi: 10.1016/j.semcdb.2015.10.034. pmid:26523344
[36]  Alizadehrad D, Krüger T, Engstler M, Stark H. Simulating the Complex Cell Design of Trypanosoma brucei and Its Motility. PLoS Comput Biol. 2015;11. doi: 10.1371/journal.pcbi.1003967.
[37]  Chamond N, Cosson A, Blom-Potar MC, Jouvion G, D’Archivio S, Medina M, et al. Trypanosoma vivax infections: pushing ahead with mouse models for the study of Nagana. I. Parasitological, hematological and pathological parameters. PLoS Negl Trop Dis. 2010;4: e792. doi: 10.1371/journal.pntd.0000792. pmid:20706595
[38]  Clarkson MJ, Awan MA. The immune response of sheep to Trypanosoma vivax. Ann Trop Med Parasitol. 1969;63: 515–527. pmid:4988736
[39]  Ikede BO, Losos GJ. Hereditary transmission of Trypanosoma vivax in sheep. Br Vet J. 1972;128: i–ii. pmid:5062161
[40]  van den Ingh TS, Zwart D, Schotman AJ, van Miert AS, Veenendaal GH. The pathology and pathogenesis of Trypanosoma vivax infection in the goat. Res Vet Sci. 1976;21: 264–270. pmid:1025633 doi: 10.1016/0304-4017(76)90082-0
[41]  Gardiner PR, Wilson AJ. Trypanosoma (Duttonefla) vivax. Parasitol Today Pers Ed. 1987;3: 49–52. doi: 10.1016/0169-4758(87)90213-4
[42]  Abenga JN. A comparative pathology of Trypanosoma brucei infections. Glob Adv Res J Med Med Sci. 2014;3: 390–399.
[43]  Eyob E, Matios L. Review on camel trypanosomosis (surra) due to Trypanosoma evansi: Epidemiology and host response. Journal of Veterinary Medicine and Animal Health. 2013; 334–43.
[44]  Losos GJ, Gwamaka G. Histological examination of wild animals naturally infected with pathogenic African trypanosomes. Acta Trop. 1973;30: 57–63. pmid:4144958
[45]  Losos GJ, Ikede BO. Review of Pathology of Diseases in Domestic and Laboratory Animals Caused by Trypanosoma congolense, T. vivax, T. brucei, T. rhodesiense and T. gambiense. Vet Pathol. 1972;9 (1 Suppl): 1–79. doi: 10.1177/030098587200901s01
[46]  Yorke W. On the variations of the haemolytic complement in experimental trypanosomiasis. Ann Trop Med Parasit. 1911;4: 385.
[47]  Goodwin LG. Pathological effects of Trypanosoma brucei on small blood vessels in rabbit ear-chambers. Trans R Soc Trop Med Hyg. 1971;65: 82–88. pmid:5092433 doi: 10.1016/0035-9203(71)90189-1
[48]  Goodwin LG. The pathology of African trypanosomiasis. Trans R Soc Trop Med Hyg. 1970;64: 797–817. pmid:5495630
[49]  Losos GJ, Paris J, Wilson AJ, Dar FK. Distribution of Trypanosoma congolense in tissues of cattle. Trans R Soc Trop Med Hyg. 1973;67: 278. doi: 10.1016/0035-9203(73)90193-4
[50]  Valli VE, Forsberg CM, Robinson GA. The pathogenesis of Trypanosoma congolense infection in calves. I. Clinical observations and gross pathological changes. Vet Pathol. 1978;15: 608–620. pmid:716157 doi: 10.1177/030098587801500504
[51]  Hemphill A, Ross CA. Flagellum-mediated adhesion of Trypanosoma congolense to bovine aorta endothelial cells. Parasitol Res. 1995;81: 412–420. pmid:7501641 doi: 10.1007/bf00931503
[52]  Geigy R, Kauffmann M. Sleeping sickness survey in the Serengeti area (Tanzania) 1971. I. Examination of large mammals for trypanosomes. Acta Trop. 1973;30: 12–23. pmid:4144952
[53]  Leeflang P, Buys J, Blotkamp C. Studies on Trypanosoma vivax: infectivity and serial maintenance of natural bovine isolates in mice. Int J Parasitol. 1976;6: 413–417. pmid:965146 doi: 10.1016/0020-7519(76)90027-8
[54]  Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9: 676–682. doi: 10.1038/nmeth.2019. pmid:22743772

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133