[1] | Gryseels B, Polman K, Clerinx J, Kestens L (2006) Human schistosomiasis. Lancet 368: 1106–1118. pmid:16997665 doi: 10.1016/s0140-6736(06)69440-3
|
[2] | Mo AX, Agosti JM, Walson JL, Hall BF, Gordon L (2014) Schistosomiasis elimination strategies and potential role of a vaccine in achieving global health goals. Am J Trop Med Hyg 90: 54–60. doi: 10.4269/ajtmh.13-0467. pmid:24402703
|
[3] | Caffrey CR (2007) Chemotherapy of schistosomiasis: present and future. Curr Opin Chem Biol 11: 433–439. pmid:17652008 doi: 10.1016/j.cbpa.2007.05.031
|
[4] | Caffrey CR, Secor WE (2011) Schistosomiasis: from drug deployment to drug development. Curr Opin Infect Dis 24: 410–417. doi: 10.1097/QCO.0b013e328349156f. pmid:21734570
|
[5] | Doenhoff MJ, Pica-Mattoccia L (2006) Praziquantel for the treatment of schistosomiasis: its use for control in areas with endemic disease and prospects for drug resistance. Expert Review of Anti-Infective Therapy 4: 199–210. pmid:16597202 doi: 10.1586/14787210.4.2.199
|
[6] | Severinghaus AE (1928) Sex studies on Schistosoma japonicum. Quarterly Journal of Microscopical Science s2: (284): 653.
|
[7] | Popiel I (1986) Male-stimulated female maturation in Schistosoma: A review. J Chem Ecol 12: 1745–1754. doi: 10.1007/BF01022380. pmid:24305892
|
[8] | Kunz W (2001) Schistosome male-female interaction: induction of germ-cell differentiation. Trends Parasitol 17: 227–231. pmid:11323306 doi: 10.1016/s1471-4922(01)01893-1
|
[9] | LoVerde PT (2002) Presidential address. Sex and schistosomes: an interesting biological interplay with control implications. J Parasitol 88: 3–13. pmid:12053976 doi: 10.2307/3285383
|
[10] | Cheng GF, Lin JJ, Feng XG, Fu ZQ, Jin YM, et al. (2005) Proteomic analysis of differentially expressed proteins between the male and female worm of Schistosoma japonicum after pairing. Proteomics 5: 511–521. pmid:15700243 doi: 10.1002/pmic.200400953
|
[11] | Pearce EJ, MacDonald AS (2002) The immunobiology of schistosomiasis. Nat Rev Immunol 2: 499–511. pmid:12094224 doi: 10.1038/nri843
|
[12] | Cheng G, Luo R, Hu C, Lin J, Bai Z, et al. (2013) TiO2-based phosphoproteomic analysis of schistosomes: characterization of phosphorylated proteins in the different stages and sex of Schistosoma japonicum. J Proteome Res 12: 729–742. doi: 10.1021/pr3007864. pmid:23259596
|
[13] | Popiel I, Basch PF (1984) Reproductive development of female Schistosoma mansoni (Digenea: Schistosomatidae) following bisexual pairing of worms and worm segments. J Exp Zool 232: 141–150. pmid:6502090 doi: 10.1002/jez.1402320117
|
[14] | Basch PF (1988) Schistosoma mansoni: nucleic acid synthesis in immature females from single-sex infections, paired in vitro with intact males and male segments. Comp Biochem Physiol B 90: 389–392. pmid:3409665 doi: 10.1016/0305-0491(88)90093-4
|
[15] | Den Hollander JE, Erasmus DA (1985) Schistosoma mansoni: male stimulation and DNA synthesis by the female. Parasitology 91 (Pt 3): 449–457. pmid:4080418 doi: 10.1017/s0031182000062697
|
[16] | Gupta BC, Basch PF (1987) The role of Schistosoma mansoni males in feeding and development of female worms. J Parasitol 73: 481–486. pmid:3298599 doi: 10.2307/3282125
|
[17] | LoVerde PT, Chen L (1991) Schistosome female reproductive development. Parasitol Today 7: 303–308. pmid:15463396 doi: 10.1016/0169-4758(91)90263-n
|
[18] | Galanti SE, Huang SC, Pearce EJ (2012) Cell death and reproductive regression in female Schistosoma mansoni. PLoS Negl Trop Dis 6: e1509. doi: 10.1371/journal.pntd.0001509. pmid:22363825
|
[19] | Knobloch J, Kunz W, Grevelding CG (2002) Quantification of DNA synthesis in multicellular organisms by a combined DAPI and BrdU technique. Dev Growth Differ 44: 559–563. pmid:12492514 doi: 10.1046/j.1440-169x.2002.00667.x
|
[20] | Zhou Y, Zheng H, Chen Y, Zhang L, Wang K, et al. (2009) The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature 460: 345–351. doi: 10.1038/nature08140. pmid:19606140
|
[21] | Liu F, Lu J, Hu W, Wang SY, Cui SJ, et al. (2006) New perspectives on host-parasite interplay by comparative transcriptomic and proteomic analyses of Schistosoma japonicum. PLoS Pathog 2: e29. pmid:16617374 doi: 10.1371/journal.ppat.0020029
|
[22] | Moertel L, McManus DP, Piva TJ, Young L, McInnes RL, et al. (2006) Oligonucleotide microarray analysis of strain- and gender-associated gene expression in the human blood fluke, Schistosoma japonicum. Mol Cell Probes 20: 280–289. pmid:16647836 doi: 10.1016/j.mcp.2006.02.002
|
[23] | Cogswell AA, Kommer VP, Williams DL (2012) Transcriptional analysis of a unique set of genes involved in Schistosoma mansoni female reproductive biology. PLoS Negl Trop Dis 6: e1907. doi: 10.1371/journal.pntd.0001907. pmid:23166854
|
[24] | Piao X, Cai P, Liu S, Hou N, Hao L, et al. (2011) Global expression analysis revealed novel gender-specific gene expression features in the blood fluke parasite Schistosoma japonicum. PLoS One 6: e18267. doi: 10.1371/journal.pone.0018267. pmid:21494327
|
[25] | You H, Zhang W, Moertel L, McManus DP, Gobert GN (2009) Transcriptional profiles of adult male and female Schistosoma japonicum in response to insulin reveal increased expression of genes involved in growth and development. Int J Parasitol 39: 1551–1559. doi: 10.1016/j.ijpara.2009.06.006. pmid:19596015
|
[26] | Fitzpatrick JM, Hoffmann KF (2006) Dioecious Schistosoma mansoni express divergent gene repertoires regulated by pairing. Int J Parasitol 36: 1081–1089. pmid:16875694 doi: 10.1016/j.ijpara.2006.06.007
|
[27] | Fitzpatrick JM, Hirai Y, Hirai H, Hoffmann KF (2007) Schistosome egg production is dependent upon the activities of two developmentally regulated tyrosinases. FASEB J 21: 823–835. pmid:17167065 doi: 10.1096/fj.06-7314com
|
[28] | Wuhrer M, Koeleman CA, Fitzpatrick JM, Hoffmann KF, Deelder AM, et al. (2006) Gender-specific expression of complex-type N-glycans in schistosomes. Glycobiology 16: 991–1006. pmid:16825488 doi: 10.1093/glycob/cwl020
|
[29] | Waisberg M, Lobo FP, Cerqueira GC, Passos LK, Carvalho OS, et al. (2007) Microarray analysis of gene expression induced by sexual contact in Schistosoma mansoni. BMC Genomics 8: 181. pmid:17578584 doi: 10.1186/1471-2164-8-181
|
[30] | Popiel I, Basch PF (1984) Putative polypeptide transfer from male to female Schistosoma mansoni. Mol Biochem Parasitol 11: 179–188. pmid:6749178 doi: 10.1016/0166-6851(84)90064-1
|
[31] | Chen LL, Rekosh DM, LoVerde PT (1992) Schistosoma mansoni p48 eggshell protein gene: characterization, developmentally regulated expression and comparison to the p14 eggshell protein gene. Mol Biochem Parasitol 52: 39–52. pmid:1625706 doi: 10.1016/0166-6851(92)90034-h
|
[32] | Gupta BC, Basch PF (1987) Evidence for transfer of a glycoprotein from male to female Schistosoma mansoni during pairing. J Parasitol 73: 674–675. pmid:3298604 doi: 10.2307/3282159
|
[33] | Grevelding CG, Sommer G, Kunz W (1997) Female-specific gene expression in Schistosoma mansoni is regulated by pairing. Parasitology 115 (Pt 6): 635–640. pmid:9488875 doi: 10.1017/s0031182097001728
|
[34] | Siegel DA, Tracy JW (1989) Schistosoma mansoni: influence of the female parasite on glutathione biosynthesis in the male. Exp Parasitol 69: 116–124. pmid:2753119 doi: 10.1016/0014-4894(89)90179-3
|
[35] | Schussler P, Grevelding CG, Kunz W (1997) Identification of Ras, MAP kinases, and a GAP protein in Schistosoma mansoni by immunoblotting and their putative involvement in male-female interaction. Parasitology 115 (Pt 6): 629–634. pmid:9488874 doi: 10.1017/s003118209700173x
|
[36] | Atkinson KH, Atkinson BG (1980) Biochemical basis for the continuous copulation of female Schistosoma mansoni. Nature 283: 478–479. pmid:7352026 doi: 10.1038/283478a0
|
[37] | Knobloch J, Kunz W, Grevelding CG (2006) Herbimycin A suppresses mitotic activity and egg production of female Schistosoma mansoni. Int J Parasitol 36: 1261–1272. pmid:16844129 doi: 10.1016/j.ijpara.2006.06.004
|
[38] | Osman A, Niles EG, Verjovski-Almeida S, LoVerde PT (2006) Schistosoma mansoni TGF-beta receptor II: role in host ligand-induced regulation of a schistosome target gene. PLoS Pathogens 2: e54. pmid:16789838 doi: 10.1371/journal.ppat.0020054
|
[39] | Freitas TC, Jung E, Pearce EJ (2007) TGF-beta signaling controls embryo development in the parasitic flatworm Schistosoma mansoni. PLoS Pathogens 3: e52. pmid:17411340 doi: 10.1371/journal.ppat.0030052
|
[40] | LoVerde PT, Osman A, Hinck A (2007) Schistosoma mansoni: TGF-beta signaling pathways. Experimental Parasitology 117: 304–317. pmid:17643432 doi: 10.1016/j.exppara.2007.06.002
|
[41] | Buro C, Oliveira KC, Lu Z, Leutner S, Beckmann S, et al. (2013) Transcriptome analyses of inhibitor-treated schistosome females provide evidence for cooperating Src-kinase and TGFbeta receptor pathways controlling mitosis and eggshell formation. PLoS Pathog 9: e1003448. doi: 10.1371/journal.ppat.1003448. pmid:23785292
|
[42] | Leutner S, Oliveira KC, Rotter B, Beckmann S, Buro C, et al. (2013) Combinatory microarray and SuperSAGE analyses identify pairing-dependently transcribed genes in Schistosoma mansoni males, including follistatin. PLoS Negl Trop Dis 7: e2532. doi: 10.1371/journal.pntd.0002532. pmid:24244773
|
[43] | Beckmann S, Buro C, Dissous C, Hirzmann J, Grevelding CG (2010) The Syk kinase SmTK4 of Schistosoma mansoni is involved in the regulation of spermatogenesis and oogenesis. PLoS Pathog 6: e1000769. doi: 10.1371/journal.ppat.1000769. pmid:20169182
|
[44] | Cai P, Piao X, Hao L, Liu S, Hou N, et al. (2013) A deep analysis of the small non-coding RNA population in Schistosoma japonicum eggs. PLoS One 8: e64003. doi: 10.1371/journal.pone.0064003. pmid:23691136
|
[45] | Cai P, Hou N, Piao X, Liu S, Liu H, et al. (2011) Profiles of small non-coding RNAs in Schistosoma japonicum during development. PLoS Negl Trop Dis 5: e1256. doi: 10.1371/journal.pntd.0001256. pmid:21829742
|
[46] | Wang Z, Xue X, Sun J, Luo R, Xu X, et al. (2010) An "in-depth" description of the small non-coding RNA population of Schistosoma japonicum schistosomulum. PLoS Negl Trop Dis 4: e596. doi: 10.1371/journal.pntd.0000596. pmid:20161724
|
[47] | Bobek LA, Rekosh DM, LoVerde PT (1991) Schistosoma japonicum: analysis of eggshell protein genes, their expression, and comparison with similar genes from other schistosomes. Exp Parasitol 72: 381–390. pmid:1709112 doi: 10.1016/0014-4894(91)90084-a
|
[48] | de Souza Gomes M, Muniyappa MK, Carvalho SG, Guerra-Sa R, Spillane C (2011) Genome-wide identification of novel microRNAs and their target genes in the human parasite Schistosoma mansoni. Genomics 98: 96–111. doi: 10.1016/j.ygeno.2011.05.007. pmid:21640815
|
[49] | Simoes MC, Lee J, Djikeng A, Cerqueira GC, Zerlotini A, et al. (2011) Identification of Schistosoma mansoni microRNAs. BMC Genomics 12: 47. doi: 10.1186/1471-2164-12-47. pmid:21247453
|
[50] | Marco A, Kozomara A, Hui JH, Emery AM, Rollinson D, et al. (2013) Sex-biased expression of microRNAs in Schistosoma mansoni. PLoS Negl Trop Dis 7: e2402. doi: 10.1371/journal.pntd.0002402. pmid:24069470
|
[51] | Oliveira KC, Carvalho ML, Maracaja-Coutinho V, Kitajima JP, Verjovski-Almeida S (2011) Non-coding RNAs in schistosomes: an unexplored world. An Acad Bras Cienc 83: 673–694. pmid:21670887 doi: 10.1590/s0001-37652011000200026
|
[52] | Hao L, Cai P, Jiang N, Wang H, Chen Q (2010) Identification and characterization of microRNAs and endogenous siRNAs in Schistosoma japonicum. BMC Genomics 11: 55. doi: 10.1186/1471-2164-11-55. pmid:20092619
|
[53] | Huang J, Hao P, Chen H, Hu W, Yan Q, et al. (2009) Genome-wide identification of Schistosoma japonicum microRNAs using a deep-sequencing approach. PLoS One 4: e8206. doi: 10.1371/journal.pone.0008206. pmid:19997615
|
[54] | Xue X, Sun J, Zhang Q, Wang Z, Huang Y, et al. (2008) Identification and characterization of novel microRNAs from Schistosoma japonicum. PLoS One 3: e4034. doi: 10.1371/journal.pone.0004034. pmid:19107204
|
[55] | Cheng G, Jin Y (2012) MicroRNAs: Potentially important regulators for schistosome development and therapeutic targets against schistosomiasis. Parasitology 139: 669–679. doi: 10.1017/S0031182011001855. pmid:22309492
|
[56] | Zhu L, Liu J, Cheng G (2014) Role of microRNAs in schistosomes and schistosomiasis. Front Cell Infect Microbiol 4: 165. doi: 10.3389/fcimb.2014.00165. pmid:25426450
|
[57] | Luo R, Xue X, Wang Z, Sun J, Zou Y, et al. (2010) Analysis and characterization of the genes encoding the Dicer and Argonaute proteins of Schistosoma japonicum. Parasit Vectors 3: 90. doi: 10.1186/1756-3305-3-90. pmid:20849617
|
[58] | Gomes MS, Cabral FJ, Jannotti-Passos LK, Carvalho O, Rodrigues V, et al. (2009) Preliminary analysis of miRNA pathway in Schistosoma mansoni. Parasitology International 58: 61–68. doi: 10.1016/j.parint.2008.10.002. pmid:19007911
|
[59] | Gomes MS, Cabral FJ, Jannotti-Passos LK, Carvalho O, Rodrigues V, et al. (2009) Preliminary analysis of miRNA pathway in Schistosoma mansoni. Parasitol Int 58: 61–68. doi: 10.1016/j.parint.2008.10.002. pmid:19007911
|
[60] | Chen J, Yang Y, Guo S, Peng J, Liu Z, et al. (2010) Molecular cloning and expression profiles of Argonaute proteins in Schistosoma japonicum. Parasitol Res 107: 889–899. doi: 10.1007/s00436-010-1946-3. pmid:20582438
|
[61] | Wang J, Czech B, Crunk A, Wallace A, Mitreva M, et al. (2011) Deep small RNA sequencing from the nematode Ascaris reveals conservation, functional diversification, and novel developmental profiles. Genome Res 21: 1462–1477. doi: 10.1101/gr.121426.111. pmid:21685128
|
[62] | Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408. pmid:11846609 doi: 10.1006/meth.2001.1262
|
[63] | Karginov FV, Conaco C, Xuan Z, Schmidt BH, Parker JS, et al. (2007) A biochemical approach to identifying microRNA targets. Proc Natl Acad Sci U S A 104: 19291–19296. pmid:18042700 doi: 10.1073/pnas.0709971104
|
[64] | Jaskiewicz L, Bilen B, Hausser J, Zavolan M (2012) Argonaute CLIP—a method to identify in vivo targets of miRNAs. Methods 58: 106–112. doi: 10.1016/j.ymeth.2012.09.006. pmid:23022257
|
[65] | Knobloch J, Beckmann S, Burmeister C, Quack T, Grevelding CG (2007) Tyrosine kinase and cooperative TGFbeta signaling in the reproductive organs of Schistosoma mansoni. Exp Parasitol 117: 318–336. pmid:17553494 doi: 10.1016/j.exppara.2007.04.006
|
[66] | LoVerde PT, Osman A, Hinck A (2007) Schistosoma mansoni: TGF-beta signaling pathways. Exp Parasitol 117: 304–317. pmid:17643432 doi: 10.1016/j.exppara.2007.06.002
|
[67] | Freitas TC, Jung E, Pearce EJ (2007) TGF-beta signaling controls embryo development in the parasitic flatworm Schistosoma mansoni. PLoS Pathog 3: e52. pmid:17411340 doi: 10.1371/journal.ppat.0030052
|
[68] | Beckmann S, Quack T, Burmeister C, Buro C, Long T, et al. (2010) Schistosoma mansoni: signal transduction processes during the development of the reproductive organs. Parasitology 137: 497–520. doi: 10.1017/S0031182010000053. pmid:20163751
|
[69] | Hu W, Yan Q, Shen DK, Liu F, Zhu ZD, et al. (2003) Evolutionary and biomedical implications of a Schistosoma japonicum complementary DNA resource. Nat Genet 35: 139–147. pmid:12973349 doi: 10.1038/ng1236
|
[70] | Verjovski-Almeida S, Leite LC, Dias-Neto E, Menck CF, Wilson RA (2004) Schistosome transcriptome: insights and perspectives for functional genomics. Trends Parasitol 20: 304–308. pmid:15193558 doi: 10.1016/j.pt.2004.04.012
|
[71] | Protasio AV, Tsai IJ, Babbage A, Nichol S, Hunt M, et al. (2012) A systematically improved high quality genome and transcriptome of the human blood fluke Schistosoma mansoni. PLoS Negl Trop Dis 6: e1455. doi: 10.1371/journal.pntd.0001455. pmid:22253936
|
[72] | Copeland CS, Marz M, Rose D, Hertel J, Brindley PJ, et al. (2009) Homology-based annotation of non-coding RNAs in the genomes of Schistosoma mansoni and Schistosoma japonicum. BMC Genomics 10: 464. doi: 10.1186/1471-2164-10-464. pmid:19814823
|
[73] | Liang S, Knight M, Jolly ER (2013) Polyethyleneimine mediated DNA transfection in schistosome parasites and regulation of the WNT signaling pathway by a dominant-negative SmMef2. PLoS Negl Trop Dis 7: e2332. doi: 10.1371/journal.pntd.0002332. pmid:23936566
|
[74] | Oliveira KC, Carvalho ML, Verjovski-Almeida S, LoVerde PT (2012) Effect of human TGF-beta on the gene expression profile of Schistosoma mansoni adult worms. Mol Biochem Parasitol 183: 132–139. doi: 10.1016/j.molbiopara.2012.02.008. pmid:22387759
|
[75] | Winklbauer R, Medina A, Swain RK, Steinbeisser H (2001) Frizzled-7 signalling controls tissue separation during Xenopus gastrulation. Nature 413: 856–860. pmid:11677610 doi: 10.1038/35101621
|
[76] | Silvie O, Goetz K, Matuschewski K (2008) A sporozoite asparagine-rich protein controls initiation of Plasmodium liver stage development. PLoS Pathog 4: e1000086. doi: 10.1371/journal.ppat.1000086. pmid:18551171
|
[77] | Lairson LL, Henrissat B, Davies GJ, Withers SG (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77: 521–555. doi: 10.1146/annurev.biochem.76.061005.092322. pmid:18518825
|
[78] | Zhang L, Zhang Y, Hagen KG (2008) A mucin-type O-glycosyltransferase modulates cell adhesion during Drosophila development. J Biol Chem 283: 34076–34086. doi: 10.1074/jbc.M804267200. pmid:18835818
|
[79] | Shin C, Manley JL (2002) The SR protein SRp38 represses splicing in M phase cells. Cell 111: 407–417. pmid:12419250 doi: 10.1016/s0092-8674(02)01038-3
|
[80] | Yang L, Embree LJ, Hickstein DD (2000) TLS-ERG leukemia fusion protein inhibits RNA splicing mediated by serine-arginine proteins. Mol Cell Biol 20: 3345–3354. pmid:10779324 doi: 10.1128/mcb.20.10.3345-3354.2000
|
[81] | Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM (2003) bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113: 25–36. pmid:12679032 doi: 10.1016/s0092-8674(03)00231-9
|
[82] | Nolo R, Morrison CM, Tao C, Zhang X, Halder G (2006) The bantam microRNA is a target of the hippo tumor-suppressor pathway. Curr Biol 16: 1895–1904. pmid:16949821 doi: 10.1016/j.cub.2006.08.057
|
[83] | Thompson BJ, Cohen SM (2006) The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell 126: 767–774. pmid:16923395 doi: 10.1016/j.cell.2006.07.013
|
[84] | Herranz H, Perez L, Martin FA, Milan M (2008) A Wingless and Notch double-repression mechanism regulates G1-S transition in the Drosophila wing. EMBO J 27: 1633–1645. doi: 10.1038/emboj.2008.84. pmid:18451803
|
[85] | Oh H, Irvine KD (2011) Cooperative regulation of growth by Yorkie and Mad through bantam. Dev Cell 20: 109–122. doi: 10.1016/j.devcel.2010.12.002. pmid:21238929
|
[86] | Herranz H, Hong X, Cohen SM (2012) Mutual repression by bantam miRNA and Capicua links the EGFR/MAPK and Hippo pathways in growth control. Curr Biol 22: 651–657. doi: 10.1016/j.cub.2012.02.050. pmid:22445297
|
[87] | Cheng G, Luo R, Hu C, Cao J, Jin Y (2013) Deep sequencing-based identification of pathogen-specific microRNAs in the plasma of rabbits infected with Schistosoma japonicum. Parasitology 140: 1751–1761. doi: 10.1017/S0031182013000917. pmid:23942009
|
[88] | Beall MJ, McGonigle S, Pearce EJ (2000) Functional conservation of Schistosoma mansoni Smads in TGF-beta signaling. Mol Biochem Parasitol 111: 131–142. pmid:11087923 doi: 10.1016/s0166-6851(00)00307-8
|
[89] | Carlo JM, Osman A, Niles EG, Wu W, Fantappie MR, et al. (2007) Identification and characterization of an R-Smad ortholog (SmSmad1B) from Schistosoma mansoni. FEBS J 274: 4075–4093. pmid:17635586 doi: 10.1111/j.1742-4658.2007.05930.x
|
[90] | Hahnel S, Quack T, Parker-Manuel SJ, Lu Z, Vanderstraete M, et al. (2014) Gonad RNA-specific qRT-PCR analyses identify genes with potential functions in schistosome reproduction such as SmFz1 and SmFGFRs. Front Genet 5: 170. doi: 10.3389/fgene.2014.00170. pmid:24959172
|
[91] | Wang Z, Xue X, Sun J, Luo R, Xu X, et al. (2010) An "in-depth" description of the small non-coding RNA population of Schistosoma japonicum schistosomulum. PLoS Neglected Tropical Diseases 4: e596. doi: 10.1371/journal.pntd.0000596. pmid:20161724
|
[92] | Cogswell AA, Collins JJ 3rd, Newmark PA, Williams DL (2011) Whole mount in situ hybridization methodology for Schistosoma mansoni. Mol Biochem Parasitol 178: 46–50. doi: 10.1016/j.molbiopara.2011.03.001. pmid:21397637
|
[93] | Zhang WN, Zhang P, Liu M, Ren CP, Jia XM, et al. (2012) Worm morphology of Schistosoma japonicum using confocal laser scanning microscopy. J Helminthol 86: 317–322. doi: 10.1017/S0022149X11000447. pmid:21810283
|
[94] | Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9: 671–675. pmid:22930834 doi: 10.1038/nmeth.2089
|