全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Transcriptome-Wide Analysis of Hepatitis B Virus-Mediated Changes to Normal Hepatocyte Gene Expression

DOI: 10.1371/journal.ppat.1005438

Full-Text   Cite this paper   Add to My Lib

Abstract:

Globally, a chronic hepatitis B virus (HBV) infection remains the leading cause of primary liver cancer. The mechanisms leading to the development of HBV-associated liver cancer remain incompletely understood. In part, this is because studies have been limited by the lack of effective model systems that are both readily available and mimic the cellular environment of a normal hepatocyte. Additionally, many studies have focused on single, specific factors or pathways that may be affected by HBV, without addressing cell physiology as a whole. Here, we apply RNA-seq technology to investigate transcriptome-wide, HBV-mediated changes in gene expression to identify single factors and pathways as well as networks of genes and pathways that are affected in the context of HBV replication. Importantly, these studies were conducted in an ex vivo model of cultured primary hepatocytes, allowing for the transcriptomic characterization of this model system and an investigation of early HBV-mediated effects in a biologically relevant context. We analyzed differential gene expression within the context of time-mediated gene-expression changes and show that in the context of HBV replication a number of genes and cellular pathways are altered, including those associated with metabolism, cell cycle regulation, and lipid biosynthesis. Multiple analysis pipelines, as well as qRT-PCR and an independent, replicate RNA-seq analysis, were used to identify and confirm differentially expressed genes. HBV-mediated alterations to the transcriptome that we identified likely represent early changes to hepatocytes following an HBV infection, suggesting potential targets for early therapeutic intervention. Overall, these studies have produced a valuable resource that can be used to expand our understanding of the complex network of host-virus interactions and the impact of HBV-mediated changes to normal hepatocyte physiology on viral replication.

References

[1]  El-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology. 2012;142(6):1264–73 e1. doi: 10.1053/j.gastro.2011.12.061. pmid:22537432
[2]  Block TM, Mehta AS, Fimmel CJ, Jordan R. Molecular viral oncology of hepatocellular carcinoma. Oncogene. 2003;22(33):5093–107. Epub 2003/08/12. pmid:12910247 doi: 10.1038/sj.onc.1206557
[3]  Scaglione SJ, Lok AS. Effectiveness of hepatitis B treatment in clinical practice. Gastroenterology. 2012;142(6):1360–8 e1. doi: 10.1053/j.gastro.2012.01.044. pmid:22537444
[4]  GLOBOCAN 2012 v1.0 [Internet]. IARC CancerBase No. 11. 2013. Available from: .
[5]  Gish RG, Given BD, Lai CL, Locarnini SA, Lau JY, Lewis DL, et al. Chronic hepatitis B: virology, natural history, current management and a glimpse at future opportunities. Antiviral research. 2015. doi: 10.1016/j.antiviral.2015.06.008
[6]  Steer CJ. Liver regeneration. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 1995;9(14):1396–400.
[7]  Gearhart TL, Bouchard MJ. The hepatitis B virus X protein modulates hepatocyte proliferation pathways to stimulate viral replication. Journal of virology. 2010;84(6):2675–86. Epub 2010/01/08. doi: 10.1128/JVI.02196-09. pmid:20053744
[8]  Gearhart TL, Bouchard MJ. The hepatitis B virus HBx protein modulates cell cycle regulatory proteins in cultured primary human hepatocytes. Virus research. 2011;155(1):363–7. Epub 2010/10/12. doi: 10.1016/j.virusres.2010.09.023. pmid:20934470
[9]  Bouchard M, Giannakopoulos S, Wang EH, Tanese N, Schneider RJ. Hepatitis B virus HBx protein activation of cyclin A-cyclin-dependent kinase 2 complexes and G1 transit via a Src kinase pathway. Journal of virology. 2001;75(9):4247–57. pmid:11287574 doi: 10.1128/jvi.75.9.4247-4257.2001
[10]  Benn J, Schneider RJ. Hepatitis B virus HBx protein deregulates cell cycle checkpoint controls. Proceedings of the National Academy of Sciences of the United States of America. 1995;92(24):11215–9. pmid:7479968 doi: 10.1073/pnas.92.24.11215
[11]  Ludgate L, Ning X, Nguyen DH, Adams C, Mentzer L, Hu J. Cyclin-dependent kinase 2 phosphorylates s/t-p sites in the hepadnavirus core protein C-terminal domain and is incorporated into viral capsids. Journal of virology. 2012;86(22):12237–50. doi: 10.1128/JVI.01218-12. pmid:22951823
[12]  Ahn JY, Chung EY, Kwun HJ, Jang KL. Transcriptional repression of p21(waf1) promoter by hepatitis B virus X protein via a p53-independent pathway. Gene. 2001;275(1):163–8. pmid:11574165 doi: 10.1016/s0378-1119(01)00604-7
[13]  Chin R, Earnest-Silveira L, Koeberlein B, Franz S, Zentgraf H, Dong X, et al. Modulation of MAPK pathways and cell cycle by replicating hepatitis B virus: factors contributing to hepatocarcinogenesis. Journal of hepatology. 2007;47(3):325–37. pmid:17512084 doi: 10.1016/j.jhep.2007.03.025
[14]  Lee S, Tarn C, Wang WH, Chen S, Hullinger RL, Andrisani OM. Hepatitis B virus X protein differentially regulates cell cycle progression in X-transforming versus nontransforming hepatocyte (AML12) cell lines. The Journal of biological chemistry. 2002;277(10):8730–40. pmid:11756437 doi: 10.1074/jbc.m108025200
[15]  Mukherji A, Janbandhu VC, Kumar V. HBx-dependent cell cycle deregulation involves interaction with cyclin E/A-cdk2 complex and destabilization of p27Kip1. The Biochemical journal. 2007;401(1):247–56. pmid:16939421 doi: 10.1042/bj20061091
[16]  Song CL, Ren JH, Ran LK, Li YG, Li XS, Chen X, et al. Cyclin D2 plays a regulatory role in HBV replication. Virology. 2014;462–463:149–57. doi: 10.1016/j.virol.2014.05.027. pmid:24992041
[17]  Bagga S, Bouchard MJ. Cell cycle regulation during viral infection. Methods Mol Biol. 2014;1170:165–227. doi: 10.1007/978-1-4939-0888-2_10. pmid:24906315
[18]  Casciano J, Bagga S, Yang B, Bouchard MJ. Modulation of cell proliferation pathways by the hepatitis B virus X protein: a potential contributor to the development of hepatocellular carcinoma. 2011.
[19]  Guo H, Zhou T, Jiang D, Cuconati A, Xiao GH, Block TM, et al. Regulation of hepatitis B virus replication by the phosphatidylinositol 3-kinase-akt signal transduction pathway. Journal of virology. 2007;81(18):10072–80. Epub 2007/07/05. pmid:17609269 doi: 10.1128/jvi.00541-07
[20]  Rawat S, Bouchard M. The Hepatitis B Virus HBx protein activates AKT to simultaneously regulate HBV replication and hepatocyte survival. Journal of virology. 2014. doi: 10.1128/jvi.02440-14
[21]  Teng CF, Hsieh WC, Wu HC, Lin YJ, Tsai HW, Huang W, et al. Hepatitis B Virus Pre-S2 Mutant Induces Aerobic Glycolysis through Mammalian Target of Rapamycin Signal Cascade. PloS one. 2015;10(4):e0122373. doi: 10.1371/journal.pone.0122373. pmid:25909713
[22]  Xu X, Fan Z, Kang L, Han J, Jiang C, Zheng X, et al. Hepatitis B virus X protein represses miRNA-148a to enhance tumorigenesis. The Journal of clinical investigation. 2013. Epub 2013/01/17. doi: 10.1172/jci64265
[23]  Zhu M, Guo J, Li W, Lu Y, Fu S, Xie X, et al. Hepatitis B virus X protein induces expression of alpha-fetoprotein and activates PI3K/mTOR signaling pathway in liver cells. Oncotarget. 2015. doi: 10.18632/oncotarget.2906
[24]  Teng CF, Wu HC, Tsai HW, Shiah HS, Huang W, Su IJ. Novel feedback inhibition of surface antigen synthesis by mammalian target of rapamycin (mTOR) signal and its implication for hepatitis B virus tumorigenesis and therapy. Hepatology. 2011;54(4):1199–207. doi: 10.1002/hep.24529. pmid:21735472
[25]  Bouchard MJ, Wang L, Schneider RJ. Activation of focal adhesion kinase by hepatitis B virus HBx protein: multiple functions in viral replication. Journal of virology. 2006;80(9):4406–14. pmid:16611900 doi: 10.1128/jvi.80.9.4406-4414.2006
[26]  Tarn C, Lee S, Hu Y, Ashendel C, Andrisani OM. Hepatitis B virus X protein differentially activates RAS-RAF-MAPK and JNK pathways in X-transforming versus non-transforming AML12 hepatocytes. The Journal of biological chemistry. 2001;276(37):34671–80. pmid:11461911 doi: 10.1074/jbc.m104105200
[27]  Liu WH, Yeh SH, Chen PJ. Role of microRNAs in hepatitis B virus replication and pathogenesis. Biochimica et biophysica acta. 2011;1809(11–12):678–85. Epub 2011/05/14. doi: 10.1016/j.bbagrm.2011.04.008. pmid:21565290
[28]  Thirion M, Ochiya T. Roles of microRNAs in the Hepatitis B Virus Infection and Related Diseases. Viruses. 2013;5(11):2690–703. doi: 10.3390/v5112690. pmid:24212236
[29]  Lamontagne J, Steel LF, Bouchard MJ. Hepatitis B virus and microRNAs: Complex interactions affecting hepatitis B virus replication and hepatitis B virus-associated diseases. World journal of gastroenterology: WJG. 2015;21(24):7375–99. doi: 10.3748/wjg.v21.i24.7375. pmid:26139985
[30]  Fletcher SP, Chin DJ, Ji Y, Iniguez AL, Taillon B, Swinney DC, et al. Transcriptomic analysis of the woodchuck model of chronic hepatitis B. Hepatology. 2012;56(3):820–30. doi: 10.1002/hep.25730. pmid:22431061
[31]  Huang Q, Lin B, Liu H, Ma X, Mo F, Yu W, et al. RNA-Seq analyses generate comprehensive transcriptomic landscape and reveal complex transcript patterns in hepatocellular carcinoma. PloS one. 2011;6(10):e26168. doi: 10.1371/journal.pone.0026168. pmid:22043308
[32]  Yu Y, Fuscoe JC, Zhao C, Guo C, Jia M, Qing T, et al. A rat RNA-Seq transcriptomic BodyMap across 11 organs and 4 developmental stages. Nature communications. 2014;5:3230. doi: 10.1038/ncomms4230. pmid:24510058
[33]  Chapple RH, Tizioto PC, Wells KD, Givan SA, Kim J, McKay SD, et al. Characterization of the rat developmental liver transcriptome. Physiol Genomics. 2013;45(8):301–11. doi: 10.1152/physiolgenomics.00128.2012. pmid:23429212
[34]  Jagya N, Varma SP, Thakral D, Joshi P, Durgapal H, Panda SK. RNA-seq based transcriptome analysis of hepatitis E virus (HEV) and hepatitis B virus (HBV) replicon transfected Huh-7 cells. PloS one. 2014;9(2):e87835. doi: 10.1371/journal.pone.0087835. pmid:24505321
[35]  Lin KT, Shann YJ, Chau GY, Hsu CN, Huang CY. Identification of latent biomarkers in hepatocellular carcinoma by ultra-deep whole-transcriptome sequencing. Oncogene. 2013. Epub 2013/10/22. doi: 10.1038/onc.2013.424
[36]  Merrick BA, Phadke DP, Auerbach SS, Mav D, Stiegelmeyer SM, Shah RR, et al. RNA-Seq profiling reveals novel hepatic gene expression pattern in aflatoxin B1 treated rats. PloS one. 2013;8(4):e61768. doi: 10.1371/journal.pone.0061768. pmid:23630614
[37]  Tyakht AV, Ilina EN, Alexeev DG, Ischenko DS, Gorbachev AY, Semashko TA, et al. RNA-Seq gene expression profiling of HepG2 cells: the influence of experimental factors and comparison with liver tissue. BMC genomics. 2014;15:1108. doi: 10.1186/1471-2164-15-1108. pmid:25511409
[38]  Fletcher SP, Chin DJ, Cheng DT, Ravindran P, Bitter H, Gruenbaum L, et al. Identification of an intrahepatic transcriptional signature associated with self-limiting infection in the woodchuck model of hepatitis B. Hepatology. 2013;57(1):13–22. doi: 10.1002/hep.25954. pmid:22806943
[39]  Nakabayashi H, Taketa K, Miyano K, Yamane T, Sato J. Growth of human hepatoma cells lines with differentiated functions in chemically defined medium. Cancer research. 1982;42(9):3858–63. pmid:6286115
[40]  Knowles BB, Howe CC, Aden DP. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science. 1980;209(4455):497–9. pmid:6248960 doi: 10.1126/science.6248960
[41]  Boess F, Kamber M, Romer S, Gasser R, Muller D, Albertini S, et al. Gene expression in two hepatic cell lines, cultured primary hepatocytes, and liver slices compared to the in vivo liver gene expression in rats: possible implications for toxicogenomics use of in vitro systems. Toxicol Sci. 2003;73(2):386–402. pmid:12657743 doi: 10.1093/toxsci/kfg064
[42]  Gripon P, Diot C, Theze N, Fourel I, Loreal O, Brechot C, et al. Hepatitis B virus infection of adult human hepatocytes cultured in the presence of dimethyl sulfoxide. Journal of virology. 1988;62(11):4136–43. pmid:3172341
[43]  Kock J, Nassal M, MacNelly S, Baumert TF, Blum HE, von Weizsacker F. Efficient infection of primary tupaia hepatocytes with purified human and woolly monkey hepatitis B virus. Journal of virology. 2001;75(11):5084–9. pmid:11333889 doi: 10.1128/jvi.75.11.5084-5089.2001
[44]  Gripon P, Rumin S, Urban S, Le Seyec J, Glaise D, Cannie I, et al. Infection of a human hepatoma cell line by hepatitis B virus. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(24):15655–60. Epub 2002/11/15. pmid:12432097 doi: 10.1073/pnas.232137699
[45]  Galle PR, Hagelstein J, Kommerell B, Volkmann M, Schranz P, Zentgraf H. In vitro experimental infection of primary human hepatocytes with hepatitis B virus. Gastroenterology. 1994;106(3):664–73. pmid:8119538
[46]  Clippinger AJ, Gearhart TL, Bouchard MJ. Hepatitis B virus X protein modulates apoptosis in primary rat hepatocytes by regulating both NF-kappaB and the mitochondrial permeability transition pore. Journal of virology. 2009;83(10):4718–31. Epub 2009/03/13. doi: 10.1128/JVI.02590-08. pmid:19279112
[47]  Sprinzl MF, Oberwinkler H, Schaller H, Protzer U. Transfer of hepatitis B virus genome by adenovirus vectors into cultured cells and mice: crossing the species barrier. Journal of virology. 2001;75(11):5108–18. pmid:11333892 doi: 10.1128/jvi.75.11.5108-5118.2001
[48]  Gearhart TL, Bouchard MJ. Replication of the hepatitis B virus requires a calcium-dependent HBx-induced G1 phase arrest of hepatocytes. Virology. 2010;407(1):14–25. Epub 2010/08/20. doi: 10.1016/j.virol.2010.07.042. pmid:20719353
[49]  Kajino K, Jilbert AR, Saputelli J, Aldrich CE, Cullen J, Mason WS. Woodchuck hepatitis virus infections: very rapid recovery after a prolonged viremia and infection of virtually every hepatocyte. Journal of virology. 1994;68(9):5792–803. pmid:7914548
[50]  Wieland SF, Spangenberg HC, Thimme R, Purcell RH, Chisari FV. Expansion and contraction of the hepatitis B virus transcriptional template in infected chimpanzees. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(7):2129–34. pmid:14764900 doi: 10.1073/pnas.0308478100
[51]  Seeger C, Ganem D, Varmus HE. Biochemical and genetic evidence for the hepatitis B virus replication strategy. Science. 1986;232(4749):477–84. pmid:3961490 doi: 10.1126/science.3961490
[52]  Perfumo S, Amicone L, Colloca S, Giorgio M, Pozzi L, Tripodi M. Recognition efficiency of the hepatitis B virus polyadenylation signals is tissue specific in transgenic mice. Journal of virology. 1992;66(11):6819–23. pmid:1357192
[53]  Vellinga J, Van der Heijdt S, Hoeben RC. The adenovirus capsid: major progress in minor proteins. The Journal of general virology. 2005;86(Pt 6):1581–8. pmid:15914835 doi: 10.1099/vir.0.80877-0
[54]  Shapiro GS, Van Peursem C, Ornelles DA, Schaack J, DeGregori J. Recombinant adenoviral vectors can induce expression of p73 via the E4-orf6/7 protein. Journal of virology. 2006;80(11):5349–60. pmid:16699015 doi: 10.1128/jvi.02016-05
[55]  Assogba BD, Choi BH, Rho HM. Transcriptional activation of the promoter of human cytomegalovirus immediate early gene (CMV-IE) by the hepatitis B viral X protein (HBx) through the NF-kappaB site. Virus research. 2002;84(1–2):171–9. pmid:11900849 doi: 10.1016/s0168-1702(01)00445-2
[56]  Qiao L, Leach K, McKinstry R, Gilfor D, Yacoub A, Park JS, et al. Hepatitis B virus X protein increases expression of p21(Cip-1/WAF1/MDA6) and p27(Kip-1) in primary mouse hepatocytes, leading to reduced cell cycle progression. Hepatology. 2001;34(5):906–17. pmid:11679961 doi: 10.1053/jhep.2001.28886
[57]  Toyama T, Lee HC, Koga H, Wands JR, Kim M. Noncanonical Wnt11 inhibits hepatocellular carcinoma cell proliferation and migration. Mol Cancer Res. 2010;8(2):254–65. doi: 10.1158/1541-7786.MCR-09-0238. pmid:20103596
[58]  Welch C, Santra MK, El-Assaad W, Zhu X, Huber WE, Keys RA, et al. Identification of a protein, G0S2, that lacks Bcl-2 homology domains and interacts with and antagonizes Bcl-2. Cancer research. 2009;69(17):6782–9. doi: 10.1158/0008-5472.CAN-09-0128. pmid:19706769
[59]  Zechner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G, Lass A, et al. FAT SIGNALS—lipases and lipolysis in lipid metabolism and signaling. Cell metabolism. 2012;15(3):279–91. doi: 10.1016/j.cmet.2011.12.018. pmid:22405066
[60]  Wang Y, Zhang Y, Qian H, Lu J, Zhang Z, Min X, et al. The g0/g1 switch gene 2 is an important regulator of hepatic triglyceride metabolism. PloS one. 2013;8(8):e72315. doi: 10.1371/journal.pone.0072315. pmid:23951308
[61]  Heckmann BL, Zhang X, Xie X, Liu J. The G0/G1 switch gene 2 (G0S2): regulating metabolism and beyond. Biochimica et biophysica acta. 2013;1831(2):276–81. doi: 10.1016/j.bbalip.2012.09.016. pmid:23032787
[62]  Wolfrum N, Greber UF. Adenovirus signalling in entry. Cellular microbiology. 2013;15(1):53–62. doi: 10.1111/cmi.12053. pmid:23083122
[63]  Alberti A, Belser C, Engelen S, Bertrand L, Orvain C, Brinas L, et al. Comparison of library preparation methods reveals their impact on interpretation of metatranscriptomic data. BMC genomics. 2014;15:912. doi: 10.1186/1471-2164-15-912. pmid:25331572
[64]  Draghici S, Khatri P, Tarca AL, Amin K, Done A, Voichita C, et al. A systems biology approach for pathway level analysis. Genome research. 2007;17(10):1537–45. pmid:17785539 doi: 10.1101/gr.6202607
[65]  Meerzaman DM, Yan C, Chen QR, Edmonson MN, Schaefer CF, Clifford RJ, et al. Genome-wide transcriptional sequencing identifies novel mutations in metabolic genes in human hepatocellular carcinoma. Cancer genomics & proteomics. 2014;11(1):1–12.
[66]  Coppola N, Potenza N, Pisaturo M, Mosca N, Tonziello G, Signoriello G, et al. Liver microRNA hsa-miR-125a-5p in HBV chronic infection: correlation with HBV replication and disease progression. PloS one. 2013;8(7):e65336. doi: 10.1371/journal.pone.0065336. pmid:23843939
[67]  Park SO, Kumar M, Gupta S. TGF-beta and iron differently alter HBV replication in human hepatocytes through TGF-beta/BMP signaling and cellular microRNA expression. PloS one. 2012;7(6):e39276. doi: 10.1371/journal.pone.0039276. pmid:22723983
[68]  Potenza N, Papa U, Mosca N, Zerbini F, Nobile V, Russo A. Human microRNA hsa-miR-125a-5p interferes with expression of hepatitis B virus surface antigen. Nucleic acids research. 2011;39(12):5157–63. Epub 2011/02/15. doi: 10.1093/nar/gkr067. pmid:21317190
[69]  Hou J, Lin L, Zhou W, Wang Z, Ding G, Dong Q, et al. Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma. Cancer cell. 2011;19(2):232–43. Epub 2011/02/15. doi: 10.1016/j.ccr.2011.01.001. pmid:21316602
[70]  Guo H, Liu H, Mitchelson K, Rao H, Luo M, Xie L, et al. MicroRNAs-372/373 promote the expression of hepatitis B virus through the targeting of nuclear factor I/B. Hepatology. 2011;54(3):808–19. Epub 2011/05/25. doi: 10.1002/hep.24441. pmid:21608007
[71]  Jin J, Tang S, Xia L, Du R, Xie H, Song J, et al. MicroRNA-501 promotes HBV replication by targeting HBXIP. Biochemical and biophysical research communications. 2013;430(4):1228–33. Epub 2012/12/26. doi: 10.1016/j.bbrc.2012.12.071. pmid:23266610
[72]  Wang Y, Lu Y, Toh ST, Sung WK, Tan P, Chow P, et al. Lethal-7 is down-regulated by the hepatitis B virus x protein and targets signal transducer and activator of transcription 3. Journal of hepatology. 2010;53(1):57–66. Epub 2010/05/08. doi: 10.1016/j.jhep.2009.12.043. pmid:20447714
[73]  Zhang ZZ, Liu X, Wang DQ, Teng MK, Niu LW, Huang AL, et al. Hepatitis B virus and hepatocellular carcinoma at the miRNA level. World journal of gastroenterology: WJG. 2011;17(28):3353–8. Epub 2011/08/31. doi: 10.3748/wjg.v17.i28.3353. pmid:21876625
[74]  Xu G, Gao Z, He W, Ma Y, Feng X, Cai T, et al. microRNA expression in hepatitis B virus infected primary treeshrew hepatocytes and the independence of intracellular miR-122 level for de novo HBV infection in culture. Virology. 2014;448:247–54. doi: 10.1016/j.virol.2013.10.016. pmid:24314655
[75]  Liu Y, Zhao JJ, Wang CM, Li MY, Han P, Wang L, et al. Altered expression profiles of microRNAs in a stable hepatitis B virus-expressing cell line. Chinese medical journal. 2009;122(1):10–4. Epub 2009/02/04. pmid:19187610
[76]  Zhang X, Zhang E, Ma Z, Pei R, Jiang M, Schlaak JF, et al. Modulation of hepatitis B virus replication and hepatocyte differentiation by MicroRNA-1. Hepatology. 2011;53(5):1476–85. Epub 2011/04/27. doi: 10.1002/hep.24195. pmid:21520166
[77]  Auth MK, Okamoto M, Ishida Y, Keogh A, Auth SH, Gerlach J, et al. Maintained function of primary human hepatocytes by cellular interactions in coculture: implications for liver support systems. Transpl Int. 1998;11 Suppl 1:S439–43. pmid:9665034 doi: 10.1111/j.1432-2277.1998.tb01176.x
[78]  Loyer P, Cariou S, Glaise D, Bilodeau M, Baffet G, Guguen-Guillouzo C. Growth factor dependence of progression through G1 and S phases of adult rat hepatocytes in vitro. Evidence of a mitogen restriction point in mid-late G1. The Journal of biological chemistry. 1996;271(19):11484–92. pmid:8626707
[79]  Michalopoulos GK, DeFrances MC. Liver regeneration. Science. 1997;276(5309):60–6. pmid:9082986 doi: 10.1126/science.276.5309.60
[80]  Wilkening S, Stahl F, Bader A. Comparison of primary human hepatocytes and hepatoma cell line Hepg2 with regard to their biotransformation properties. Drug Metab Dispos. 2003;31(8):1035–42. pmid:12867492 doi: 10.1124/dmd.31.8.1035
[81]  Boni C, Fisicaro P, Valdatta C, Amadei B, Di Vincenzo P, Giuberti T, et al. Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection. Journal of virology. 2007;81(8):4215–25. pmid:17287266 doi: 10.1128/jvi.02844-06
[82]  Bingle CD, Seal RL, Craven CJ. Systematic nomenclature for the PLUNC/PSP/BSP30/SMGB proteins as a subfamily of the BPI fold-containing superfamily. Biochem Soc Trans. 2011;39(4):977–83. doi: 10.1042/BST0390977. pmid:21787333
[83]  Bingle CD, Bingle L, Craven CJ. Distant cousins: genomic and sequence diversity within the BPI fold-containing (BPIF)/PLUNC protein family. Biochem Soc Trans. 2011;39(4):961–5. doi: 10.1042/BST0390961. pmid:21787330
[84]  Bremer CM, Bung C, Kott N, Hardt M, Glebe D. Hepatitis B virus infection is dependent on cholesterol in the viral envelope. Cellular microbiology. 2009;11(2):249–60. doi: 10.1111/j.1462-5822.2008.01250.x. pmid:19016777
[85]  Dorobantu C, Macovei A, Lazar C, Dwek RA, Zitzmann N, Branza-Nichita N. Cholesterol depletion of hepatoma cells impairs hepatitis B virus envelopment by altering the topology of the large envelope protein. Journal of virology. 2011;85(24):13373–83. doi: 10.1128/JVI.05423-11. pmid:21994451
[86]  Wieland S, Thimme R, Purcell RH, Chisari FV. Genomic analysis of the host response to hepatitis B virus infection. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(17):6669–74. pmid:15100412 doi: 10.1073/pnas.0401771101
[87]  Molina-Jimenez F, Benedicto I, Murata M, Martin-Vilchez S, Seki T, Antonio Pintor-Toro J, et al. Expression of pituitary tumor-transforming gene 1 (PTTG1)/securin in hepatitis B virus (HBV)-associated liver diseases: evidence for an HBV X protein-mediated inhibition of PTTG1 ubiquitination and degradation. Hepatology. 2010;51(3):777–87. doi: 10.1002/hep.23468. pmid:20198633
[88]  Zhang Z, Zhang JY, Wherry EJ, Jin B, Xu B, Zou ZS, et al. Dynamic programmed death 1 expression by virus-specific CD8 T cells correlates with the outcome of acute hepatitis B. Gastroenterology. 2008;134(7):1938–49, 49 e1-3. doi: 10.1053/j.gastro.2008.03.037. pmid:18455515
[89]  Jovanovic M, Rooney MS, Mertins P, Przybylski D, Chevrier N, Satija R, et al. Immunogenetics. Dynamic profiling of the protein life cycle in response to pathogens. Science. 2015;347(6226):1259038. doi: 10.1126/science.1259038. pmid:25745177
[90]  La Rocca G, Olejniczak SH, Gonzalez AJ, Briskin D, Vidigal JA, Spraggon L, et al. In vivo, Argonaute-bound microRNAs exist predominantly in a reservoir of low molecular weight complexes not associated with mRNA. Proceedings of the National Academy of Sciences of the United States of America. 2015;112(3):767–72. doi: 10.1073/pnas.1424217112. pmid:25568082
[91]  Olejniczak SH, La Rocca G, Gruber JJ, Thompson CB. Long-lived microRNA-Argonaute complexes in quiescent cells can be activated to regulate mitogenic responses. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(1):157–62. doi: 10.1073/pnas.1219958110. pmid:23248281
[92]  Grisham J. Organizational Principles in the Liver. In: Arias IM, editor. The Liver Biology and Pathobiology. 5th ed: WIley-Blackwell; 2009. p. 3–15.
[93]  Clippinger AJ, Bouchard MJ. Hepatitis B virus HBx protein localizes to mitochondria in primary rat hepatocytes and modulates mitochondrial membrane potential. Journal of virology. 2008;82(14):6798–811. Epub 2008/05/02. doi: 10.1128/JVI.00154-08. pmid:18448529
[94]  Seglen P. Isolation of hepatocytes by collagenase perfusion. Methods in Toxicology. 11993. p. 231–43. doi: 10.1016/b978-0-12-461201-3.50026-8
[95]  Bouchard MJ, Wang LH, Schneider RJ. Calcium signaling by HBx protein in hepatitis B virus DNA replication. Science. 2001;294(5550):2376–8. pmid:11743208 doi: 10.1126/science.294.5550.2376
[96]  Andrews S. FastQC. Babraham Institute; 2014.
[97]  Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60. doi: 10.1093/bioinformatics/btp324. pmid:19451168
[98]  Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. doi: 10.1093/bioinformatics/bts635. pmid:23104886
[99]  Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome biology. 2013;14(4):R36. doi: 10.1186/gb-2013-14-4-r36. pmid:23618408
[100]  Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nature methods. 2012;9(4):357–9. doi: 10.1038/nmeth.1923. pmid:22388286
[101]  Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: fast processing of NGS alignment formats. Bioinformatics. 2015. doi: 10.1093/bioinformatics/btv098
[102]  Team RC. R: A language and environment for statistical computing. R Foundation for Statistical Computing; 2014.
[103]  Morgan M, Pages H, Obenchain V, Hayden N. Rsamtools: Binary alignment (BAM), FASTA, variant call (BCF), and tabix file import.
[104]  Lawrence M, Huber W, Pages H, Aboyoun P, Carlson M, Gentleman R, et al. Software for computing and annotating genomic ranges. PLoS computational biology. 2013;9(8):e1003118. doi: 10.1371/journal.pcbi.1003118. pmid:23950696
[105]  Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature methods. 2008;5(7):621–8. doi: 10.1038/nmeth.1226. pmid:18516045
[106]  Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature protocols. 2012;7(3):562–78. doi: 10.1038/nprot.2012.016. pmid:22383036
[107]  Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology. 2014;15(12):550. pmid:25516281 doi: 10.1186/s13059-014-0550-8
[108]  Anders S, Huber W. Differential expression analysis for sequence count data. Genome biology. 2010;11(10):R106. doi: 10.1186/gb-2010-11-10-r106. pmid:20979621
[109]  Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40. doi: 10.1093/bioinformatics/btp616. pmid:19910308
[110]  Benjamini Y, Hochberg Y. Controlling the False Discovery Rate—a Practical and Powerful Approach to Multiple Testing. J Roy Stat Soc B Met. 1995;57(1):289–300.
[111]  Oliveros JC. VENNY. An interactive tool for comparing lists with Venn Diagrams. 2007. Available from: .
[112]  Wickham H. ggplot2: elegant graphics for data analysis: Springer New York; 2009.
[113]  Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–2. doi: 10.1093/bioinformatics/btq033. pmid:20110278
[114]  Kasprzyk A. BioMart: driving a paradigm change in biological data management. Database (Oxford). 2011;2011:bar049. doi: 10.1093/database/bar049
[115]  Del Sorbo MR, Balzano W, Donato M, Draghici S. Assessing co-regulation of directly linked genes in biological networks using microarray time series analysis. Biosystems. 2013;114(2):149–54. doi: 10.1016/j.biosystems.2013.07.006. pmid:23876997

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133