Wolbachia pipientis is an endosymbiotic bacterium estimated to chronically infect between 40–75% of all arthropod species. Aedes aegypti, the principle mosquito vector of dengue virus (DENV), is not a natural host of Wolbachia. The transinfection of Wolbachia strains such as wAlbB, wMel and wMelPop-CLA into Ae. aegypti has been shown to significantly reduce the vector competence of this mosquito for a range of human pathogens in the laboratory. This has led to wMel-transinfected Ae. aegypti currently being released in five countries to evaluate its effectiveness to control dengue disease in human populations. Here we describe the generation of a superinfected Ae. aegypti mosquito line simultaneously infected with two avirulent Wolbachia strains, wMel and wAlbB. The line carries a high overall Wolbachia density and tissue localisation of the individual strains is very similar to each respective single infected parental line. The superinfected line induces unidirectional cytoplasmic incompatibility (CI) when crossed to each single infected parental line, suggesting that the superinfection would have the capacity to replace either of the single constituent infections already present in a mosquito population. No significant differences in fitness parameters were observed between the superinfected line and the parental lines under the experimental conditions tested. Finally, the superinfected line blocks DENV replication more efficiently than the single wMel strain when challenged with blood meals from viremic dengue patients. These results suggest that the deployment of superinfections could be used to replace single infections and may represent an effective strategy to help manage potential resistance by DENV to field deployments of single infected strains.
References
[1]
Hertig M, Wolbach SB. Studies on Rickettsia-Like Micro-Organisms in Insects. The Journal of medical research. 1924;44(3):329–74 7. pmid:19972605
[2]
Werren JH, Baldo L, Clark ME. Wolbachia: master manipulators of invertebrate biology. Nature reviews Microbiology. 2008;6(10):741–51. doi: 10.1038/nrmicro1969. pmid:18794912
[3]
Zug R, Hammerstein P. Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PloS one. 2012;7(6):e38544. doi: 10.1371/journal.pone.0038544. pmid:22685581
[4]
Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH. How many species are infected with Wolbachia?—A statistical analysis of current data. FEMS microbiology letters. 2008;281(2):215–20. doi: 10.1111/j.1574-6968.2008.01110.x. pmid:18312577
[5]
Werren JH, O'Neill SL. The evolution of heritable symbionts. In: O'Neill SL, Hoffmann AA, Werren JH, editors. Influential Passengers. New York: Oxford University Press; 1997. p. 1–41.
Yen JH, Barr AR. The etiological agent of cytoplasmic incompatibility in Culex pipiens. Journal of invertebrate pathology. 1973;22(2):242–50. pmid:4206296 doi: 10.1016/0022-2011(73)90141-9
[8]
Atyame CM, Labbe P, Dumas E, Milesi P, Charlat S, Fort P, et al. Wolbachia divergence and the evolution of cytoplasmic incompatibility in Culex pipiens. PloS one. 2014;9(1):e87336. doi: 10.1371/journal.pone.0087336. pmid:24498078
[9]
McMeniman CJ, Lane RV, Cass BN, Fong AW, Sidhu M, Wang YF, et al. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science. 2009;323(5910):141–4. doi: 10.1126/science.1165326. pmid:19119237
[10]
Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell. 2009;139(7):1268–78. doi: 10.1016/j.cell.2009.11.042. pmid:20064373
[11]
Teixeira L, Ferreira A, Ashburner M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS biology. 2008;6(12):e2. doi: 10.1371/journal.pbio.1000002. pmid:19222304
[12]
Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, et al. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature. 2011;476(7361):450–3. doi: 10.1038/nature10355. pmid:21866159
[13]
Kambris Z, Cook PE, Phuc HK, Sinkins SP. Immune activation by life-shortening Wolbachia and reduced filarial competence in mosquitoes. Science. 2009;326(5949):134–6. Epub 2009/10/03. doi: 10.1126/science.1177531. pmid:19797660
[14]
Bian G, Joshi D, Dong Y, Lu P, Zhou G, Pan X, et al. Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection. Science. 2013;340(6133):748–51. doi: 10.1126/science.1236192. pmid:23661760
[15]
Hughes GL, Rivero A, Rasgon JL. Wolbachia can enhance Plasmodium infection in mosquitoes: implications for malaria control? PLoS pathogens. 2014;10(9):e1004182. doi: 10.1371/journal.ppat.1004182. pmid:25187984
[16]
Murdock CC, Blanford S, Hughes GL, Rasgon JL, Thomas MB. Temperature alters Plasmodium blocking by Wolbachia. Scientific reports. 2014;4:3932. doi: 10.1038/srep03932. pmid:24488176
[17]
Caragata EP, Rances E, Hedges LM, Gofton AW, Johnson KN, O'Neill SL, et al. Dietary cholesterol modulates pathogen blocking by Wolbachia. PLoS pathogens. 2013;9(6):e1003459. doi: 10.1371/journal.ppat.1003459. pmid:23825950
[18]
Rances E, Ye YH, Woolfit M, McGraw EA, O'Neill SL. The relative importance of innate immune priming in Wolbachia-mediated dengue interference. PLoS pathogens. 2012;8(2):e1002548. doi: 10.1371/journal.ppat.1002548. pmid:22383881
[19]
Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, Muzzi F, et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature. 2011;476(7361):454–7. doi: 10.1038/nature10356. pmid:21866160
[20]
Iturbe-Ormaetxe I, Walker T, SL ON . Wolbachia and the biological control of mosquito-borne disease. EMBO reports. 2011;12(6):508–18. doi: 10.1038/embor.2011.84. pmid:21546911
[21]
Min KT, Benzer S. Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death. Proceedings of the National Academy of Sciences of the United States of America. 1997;94(20):10792–6. pmid:9380712 doi: 10.1073/pnas.94.20.10792
[22]
Suh E, Mercer DR, Fu Y, Dobson SL. Pathogenicity of life-shortening Wolbachia in Aedes albopictus after transfer from Drosophila melanogaster. Applied and environmental microbiology. 2009;75(24):7783–8. doi: 10.1128/AEM.01331-09. pmid:19820149
[23]
Zhukova MV, Kiseleva E. The virulent Wolbachia strain wMelPop increases the frequency of apoptosis in the female germline cells of Drosophila melanogaster. BMC microbiology. 2012;12 Suppl 1:S15. doi: 10.1186/1471-2180-12-S1-S15. pmid:22375935
[24]
Turelli M. Cytoplasmic incompatibility in populations with overlapping generations. Evolution; international journal of organic evolution. 2010;64(1):232–41. doi: 10.1111/j.1558-5646.2009.00822.x. pmid:19686264
[25]
Bian G, Xu Y, Lu P, Xie Y, Xi Z. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS pathogens. 2010;6(4):e1000833. doi: 10.1371/journal.ppat.1000833. pmid:20368968
[26]
Ferree PM, Frydman HM, Li JM, Cao J, Wieschaus E, Sullivan W. Wolbachia utilizes host microtubules and Dynein for anterior localization in the Drosophila oocyte. PLoS pathogens. 2005;1(2):e14. pmid:16228015 doi: 10.1371/journal.ppat.0010014
[27]
Serbus LR, Sullivan W. A cellular basis for Wolbachia recruitment to the host germline. PLoS pathogens. 2007;3(12):e190. pmid:18085821 doi: 10.1371/journal.ppat.0030190
[28]
Sinkins SP, Braig HR, O'Neill SL. Wolbachia superinfections and the expression of cytoplasmic incompatibility. Proceedings Biological sciences / The Royal Society. 1995;261(1362):325–30. pmid:8587875 doi: 10.1098/rspb.1995.0154
[29]
Yeap HL, Axford JK, Popovici J, Endersby NM, Iturbe-Ormaetxe I, Ritchie SA, et al. Assessing quality of life-shortening Wolbachia-infected Aedes aegypti mosquitoes in the field based on capture rates and morphometric assessments. Parasites & vectors. 2014;7:58. doi: 10.1186/1756-3305-7-58
[30]
Nguyen TH, Nguyen HL, Nguyen TY, Vu SN, Tran ND, Le TN, et al. Field evaluation of the establishment potential of wmelpop Wolbachia in Australia and Vietnam for dengue control. Parasites & vectors. 2015;8:563. doi: 10.1186/s13071-015-1174-x
[31]
Ferguson NM, Kien DT, Clapham H, Aguas R, Trung VT, Chau TN, et al. Modeling the impact on virus transmission of Wolbachia-mediated blocking of dengue virus infection of Aedes aegypti. Science translational medicine. 2015;7(279):279ra37. doi: 10.1126/scitranslmed.3010370. pmid:25787763
[32]
Frentiu FD, Zakir T, Walker T, Popovici J, Pyke AT, van den Hurk A, et al. Limited Dengue Virus Replication in Field-Collected Aedes aegypti Mosquitoes Infected with Wolbachia. PLoS neglected tropical diseases. 2014;8(2):e2688. Epub 2014/03/04. doi: 10.1371/journal.pntd.0002688. pmid:24587459
[33]
Pan X, Zhou G, Wu J, Bian G, Lu P, Raikhel AS, et al. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(1):E23–31. doi: 10.1073/pnas.1116932108. pmid:22123956
[34]
Chrostek E, Marialva MS, Esteves SS, Weinert LA, Martinez J, Jiggins FM, et al. Wolbachia variants induce differential protection to viruses in Drosophila melanogaster: a phenotypic and phylogenomic analysis. PLoS genetics. 2013;9(12):e1003896. Epub 2013/12/19. doi: 10.1371/journal.pgen.1003896. pmid:24348259
[35]
Rances E, Johnson TK, Popovici J, Iturbe-Ormaetxe I, Zakir T, Warr CG, et al. The toll and Imd pathways are not required for wolbachia-mediated dengue virus interference. Journal of virology. 2013;87(21):11945–9. doi: 10.1128/JVI.01522-13. pmid:23986574
[36]
Molloy JC, Sinkins SP. Wolbachia Do Not Induce Reactive Oxygen Species-Dependent Immune Pathway Activation in Aedes albopictus. Viruses. 2015;7(8):4624–39. doi: 10.3390/v7082836. pmid:26287231
[37]
Osborne SE, Iturbe-Ormaetxe I, Brownlie JC, O'Neill SL, Johnson KN. Antiviral protection and the importance of Wolbachia density and tissue tropism in Drosophila simulans. Applied and environmental microbiology. 2012;78(19):6922–9. doi: 10.1128/AEM.01727-12. pmid:22843518
[38]
Martinez J, Longdon B, Bauer S, Chan YS, Miller WJ, Bourtzis K, et al. Symbionts commonly provide broad spectrum resistance to viruses in insects: a comparative analysis of Wolbachia strains. PLoS pathogens. 2014;10(9):e1004369. doi: 10.1371/journal.ppat.1004369. pmid:25233341
[39]
Hedges LM, Brownlie JC, O'Neill SL, Johnson KN. Wolbachia and virus protection in insects. Science. 2008;322(5902):702. Epub 2008/11/01. doi: 10.1126/science.1162418. pmid:18974344
[40]
Holmes EC. Patterns of intra- and interhost nonsynonymous variation reveal strong purifying selection in dengue virus. Journal of virology. 2003;77(20):11296–8. pmid:14512579 doi: 10.1128/jvi.77.20.11296-11298.2003
[41]
Nguyen T, Nguyen H, Nguyen T, SN V , ND T , Le T, et al. Field evaluation of the establishment potential of wMelpop Wolbachia in Australia and Vietnam for dengue control. PLoS neglected tropical diseases. Submitted.
[42]
Russell BM, Kay BH, Shipton W. Survival of Aedes aegypti (Diptera: Culicidae) eggs in surface and subterranean breeding sites during the northern Queensland dry season. Journal of medical entomology. 2001;38(3):441–5. pmid:11372971 doi: 10.1603/0022-2585-38.3.441
[43]
Trpis M. Dry season survival of Aedes aegypti eggs in various breeding sites in the Dar es Salaam area, Tanzania. Bulletin of the World Health Organization. 1972;47(3):433–7. pmid:4539825
[44]
Hoffmann AA, Goundar AA, Long SA, Johnson PH, Ritchie SA. Invasion of Wolbachia at the residential block level is associated with local abundance of Stegomyia aegypti, yellow fever mosquito, populations and property attributes. Medical and veterinary entomology. 2014;28 Suppl 1:90–7. doi: 10.1111/mve.12077. pmid:25171611
[45]
Nguyet MN, Duong TH, Trung VT, Nguyen TH, Tran CN, Long VT, et al. Host and viral features of human dengue cases shape the population of infected and infectious Aedes aegypti mosquitoes. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(22):9072–7. doi: 10.1073/pnas.1303395110. pmid:23674683