[1] | Monds RD, O'Toole GA (2009) The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol 17: 73–87. doi: 10.1016/j.tim.2008.11.001. pmid:19162483
|
[2] | Desai JV, Mitchell AP, Andes DR (2014) Fungal biofilms, drug resistance, and recurrent infection. Cold Spring Harb Perspect Med 4. doi: 10.1101/cshperspect.a019729
|
[3] | Mah TF, O'Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9: 34–39. pmid:11166241 doi: 10.1016/s0966-842x(00)01913-2
|
[4] | Kostakioti M, Hadjifrangiskou M, Hultgren SJ (2013) Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med 3: a010306. doi: 10.1101/cshperspect.a010306. pmid:23545571
|
[5] | Watnick P, Kolter R (2000) Biofilm, city of microbes. J Bacteriol 182: 2675–2679. pmid:10781532 doi: 10.1128/jb.182.10.2675-2679.2000
|
[6] | Ramage G, Mowat E, Jones B, Williams C, Lopez-Ribot J (2009) Our current understanding of fungal biofilms. Crit Rev Microbiol 35: 340–355. doi: 10.3109/10408410903241436. pmid:19863383
|
[7] | Nett JE, Sanchez H, Cain MT, Ross KM, Andes DR (2011) Interface of Candida albicans biofilm matrix-associated drug resistance and cell wall integrity regulation. Eukaryot Cell 10: 1660–1669. doi: 10.1128/EC.05126-11. pmid:21666076
|
[8] | Uppuluri P, Chaturvedi AK, Srinivasan A, Banerjee M, Ramasubramaniam AK, et al. (2010) Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog 6: e1000828. doi: 10.1371/journal.ppat.1000828. pmid:20360962
|
[9] | Sellam A, Al-Niemi T, McInnerney K, Brumfield S, Nantel A, et al. (2009) A Candida albicans early stage biofilm detachment event in rich medium. BMC Microbiol 9: 25. doi: 10.1186/1471-2180-9-25. pmid:19187560
|
[10] | James GA, Korber DR, Caldwell DE, Costerton JW (1995) Digital image analysis of growth and starvation responses of a surface-colonizing Acinetobacter sp. J Bacteriol 177: 907–915. pmid:7860599
|
[11] | Petrova OE, Sauer K (2012) Dispersion by Pseudomonas aeruginosa requires an unusual posttranslational modification of BdlA. Proc Natl Acad Sci U S A 109: 16690–16695. doi: 10.1073/pnas.1207832109. pmid:23012421
|
[12] | Romling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77: 1–52. doi: 10.1128/MMBR.00043-12. pmid:23471616
|
[13] | Romeo T (2006) When the party is over: a signal for dispersal of Pseudomonas aeruginosa biofilms. J Bacteriol 188: 7325–7327. pmid:17050919 doi: 10.1128/jb.01317-06
|
[14] | Uppuluri P, Pierce CG, Thomas DP, Bubeck SS, Saville SP, et al. (2010) The transcriptional regulator Nrg1p controls Candida albicans biofilm formation and dispersion. Eukaryot Cell 9: 1531–1537. doi: 10.1128/EC.00111-10. pmid:20709787
|
[15] | Nobile CJ, Fox EP, Hartooni N, Mitchell KF, Hnisz D, et al. (2014) A histone deacetylase complex mediates biofilm dispersal and drug resistance in Candida albicans. MBio 5: e01201–01214. doi: 10.1128/mBio.01201-14. pmid:24917598
|
[16] | Bieber D, Ramer SW, Wu CY, Murray WJ, Tobe T, et al. (1998) Type IV pili, transient bacterial aggregates, and virulence of enteropathogenic Escherichia coli. Science 280: 2114–2118. pmid:9641917 doi: 10.1126/science.280.5372.2114
|
[17] | Chua SL, Liu Y, Yam JK, Chen Y, Vejborg RM, et al. (2014) Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyles. Nat Commun 5: 4462. doi: 10.1038/ncomms5462. pmid:25042103
|
[18] | Davies DG, Marques CN (2009) A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol 191: 1393–1403. doi: 10.1128/JB.01214-08. pmid:19074399
|
[19] | Hogan DA, Kolter R (2002) Pseudomonas-Candida interactions: an ecological role for virulence factors. Science 296: 2229–2232. pmid:12077418 doi: 10.1126/science.1070784
|
[20] | Hall RA, Turner KJ, Chaloupka J, Cottier F, De Sordi L, et al. (2011) The quorum-sensing molecules farnesol/homoserine lactone and dodecanol operate via distinct modes of action in Candida albicans. Eukaryot Cell 10: 1034–1042. doi: 10.1128/EC.05060-11. pmid:21666074
|
[21] | Hogan DA, Vik A, Kolter R (2004) A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol Microbiol 54: 1212–1223. pmid:15554963 doi: 10.1111/j.1365-2958.2004.04349.x
|
[22] | Jabra-Rizk MA, Meiller TF, James CE, Shirtliff ME (2006) Effect of farnesol on Staphylococcus aureus biofilm formation and antimicrobial susceptibility. Antimicrob Agents Chemother 50: 1463–1469. pmid:16569866 doi: 10.1128/aac.50.4.1463-1469.2006
|
[23] | Kostoulias X, Murray GL, Cerqueira GM, Kong JB, Bantun F, et al. (2015) The Impact of a Cross-Kingdom Signalling Molecule of Candida albicans on Acinetobacter baumannii physiology. Antimicrob Agents Chemother 60: 161–167. doi: 10.1128/AAC.01540-15. pmid:26482299
|
[24] | Bjarnsholt T, Ciofu O, Molin S, Givskov M, Hoiby N (2013) Applying insights from biofilm biology to drug development—can a new approach be developed? Nat Rev Drug Discov 12: 791–808. doi: 10.1038/nrd4000. pmid:24080700
|
[25] | Fey PD (2010) Modality of bacterial growth presents unique targets: how do we treat biofilm-mediated infections? Curr Opin Microbiol 13: 610–615. doi: 10.1016/j.mib.2010.09.007. pmid:20884280
|
[26] | Izano EA, Amarante MA, Kher WB, Kaplan JB (2008) Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Appl Environ Microbiol 74: 470–476. pmid:18039822 doi: 10.1128/aem.02073-07
|
[27] | Kaplan JB, LoVetri K, Cardona ST, Madhyastha S, Sadovskaya I, et al. (2012) Recombinant human DNase I decreases biofilm and increases antimicrobial susceptibility in staphylococci. J Antibiot (Tokyo) 65: 73–77. doi: 10.1038/ja.2011.113
|
[28] | Ma Q, Zhang G, Wood TK (2011) Escherichia coli BdcA controls biofilm dispersal in Pseudomonas aeruginosa and Rhizobium meliloti. BMC Res Notes 4: 447. doi: 10.1186/1756-0500-4-447. pmid:22029875
|
[29] | Ma Q, Yang Z, Pu M, Peti W, Wood TK (2011) Engineering a novel c-di-GMP-binding protein for biofilm dispersal. Environ Microbiol 13: 631–642. doi: 10.1111/j.1462-2920.2010.02368.x. pmid:21059164
|
[30] | Barraud N, Hassett DJ, Hwang SH, Rice SA, Kjelleberg S, et al. (2006) Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol 188: 7344–7353. pmid:17050922 doi: 10.1128/jb.00779-06
|
[31] | Driks A (2011) Tapping into the biofilm: insights into assembly and disassembly of a novel amyloid fibre in Bacillus subtilis. Mol Microbiol 80: 1133–1136. doi: 10.1111/j.1365-2958.2011.07666.x. pmid:21488983
|
[32] | Sanchez CJ Jr., Akers KS, Romano DR, Woodbury RL, Hardy SK, et al. (2014) D-amino acids enhance the activity of antimicrobials against biofilms of clinical wound isolates of Staphylococcus aureus and Pseudomonas aeruginosa. Antimicrob Agents Chemother 58: 4353–4361. doi: 10.1128/AAC.02468-14. pmid:24841260
|
[33] | Martins M, Uppuluri P, Thomas DP, Cleary IA, Henriques M, et al. (2010) Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms. Mycopathologia 169: 323–331. doi: 10.1007/s11046-009-9264-y. pmid:20012895
|
[34] | Uppuluri P, Srinivasan A, Ramasubramanian A, Lopez-Ribot JL (2011) Effects of fluconazole, amphotericin B, and caspofungin on Candida albicans biofilms under conditions of flow and on biofilm dispersion. Antimicrob Agents Chemother 55: 3591–3593. doi: 10.1128/AAC.01701-10. pmid:21518839
|
[35] | Robbins N, Uppuluri P, Nett J, Rajendran R, Ramage G, et al. (2011) Hsp90 governs dispersion and drug resistance of fungal biofilms. PLoS Pathog 7: e1002257. doi: 10.1371/journal.ppat.1002257. pmid:21931556
|